
Qilan®

Version 2.8.1

CommonGround Softworks, Inc.
February 18, 2004, All Rights Reserved

Documentation by Stephen Caine

Page 1

Table of Contents

License Agreement ... 5

Acknowledgements... 11

Documentation Icons.. 13

Introduction.. 15
Hardware/Software Requirements ..16

Installation.. 19
Registration ...20
Updating a Project ...22
Plug-Ins ...22
The Qilan Schema Overview ..23

Qilan Icons and Windows... 25
Object Hierarchy ...25
Project..27
Access..27
Access Table..28
Access Field ..29
Access Relationship ..30
Access DataFlow...30
Access Abacus...31
Framework...31
Framework Field ...32
Framework Abacus..32
Framework Relationship ...32
Framework DataFlow..32
Framework WebTemplate...33

Customizing the Toolbar .. 35

Icon Uses .. 37
Parent Icon...38

Copy/Paste Icon... 39
Dragging an Icon...41

Global Preferences.. 45

Project Settings ... 47
New WebTemplate DTD...48
HTML File Root Directory ...49
Browser Test URL Prefix..49
Export WebTemplate on Close ...50
Export All WebTemplates on Save ...50
Command Timeout..52
Iteration Limit..52
Recursion Limit...52

Page 2

Treat Empty as Undefined DTD ...54
Error Message..56
General Notes Regarding Preference Settings ..57
Beautify Names on Import ..58
Log Errors..58
Web Server Configuration...58

Accessing a Database .. 62
Schema User..65
Login User...66
Importing the Database Schema..67
Exporting the Database Schema..68
Tables ..71
Data Base Compatibility ...72

Fields... 73
Creating a New Table Field...74
Framework Fields..80

Relationships ... 83
Relationship Types ..85
Relationship Semantics ...85
The Access Relationship Window ..86
The Framework Relationship Window ...87
Building Relationships ..88
Using a Relationship in an Abacus..91
The Framework Relationship ..96

DataFlow .. 101
Building a DataFlow ...102

Abacus Expressions ... 105
What is an Abacus...105
Operators ...106
Operands..107

Operator Listing ..108
Abacus Limits..132
Conversion...133
Manipulating Dates and Times..134
Defined, Empty and Undefined Values...136
Operator Input/Output Summary...137
Formats..140

Formatting Options: Numbers...140
Specification of Multiple Formats...142
Formatting Options: Dates ..143

CGI Environmental Keywords..145

Session Server... 151
Creating Sessions ..152

Page 3

Using Session IDs ...153

Record Locking.. 159

SQL-92 Isolation Levels.. 163

Designing Abacus Expressions .. 165
Building an Abacus Expression ..165
The Abacus Palette..170
Creating an Expression..174
Recursion Limit...180

The WebTemplate.. 181
Choosing a WebTemplate DTD..182
The WebTemplate Palette ...187
Building a WebTemplate...190
Previewing a WebTemplate in an Internet Browser ...197
Webtemplate Printing..198
Inserting Tags ..199
Selecting Tag Attributes..200
WebTemplate Editing..204
Webtemplate Line Numbers..210
Importing Existing HTML ..211
The ‘Q’ Tags ...213

QASSIGN..214
QCOMMENT..216
QDELETE...217
QIFBLOCK...219
QIFTHEN..220
QELSE...220
QELSEIF...222
QFIND...223
HTML / QFIND Derivative Tags..228
QINPUT ..231
QOPTION ...233
QGROUP...234
QLOGIN..239
QWHILE ...241
QLOOP..244
QCREATE...246
QUPDATE ..250
QPROCESS...257
QTRYBLOCK...258
QTRY ..259
QCATCH...262
QSTOP ..264
QVALUE...265
QRUN..266

Page 4

QHTTP ..271
Building Queries with SQL...274
Building Queries with Qilan..276
HTML Input Forms...279

Dynamic Sorting..287
Capturing Values...289

Appendix... 297
Database Adapters...299

Microsoft SQL Server® Supplement ..300
MS Access® Supplement..301
MySQL™ Supplement..304
Paradox® Supplement...306
FileMaker® Supplement ...308
Sybase® Supplement ..310
Informix® Supplement..312
Oracle® Supplement ...313
Helix® Supplement...315

SQL Addendum...323
SQL Reserved Words..324
Field Formatting Reference...327
Understanding Dates Times with Qilan ..340

Modifying Program Defaults...345
Modifying a DTD..346
Modifying Defaults.plist ...351

QRUN Shell Scripts ..353
Sample QRUN Shell Scripts ...354

Additional Appendices ..359
Installing FastCGI ...360
Qilan Field Coercion Reference ..366
Command Key Equivalents...367
Using Data Types in Relationships: A Flow Chart ...369

Page 5

License Agreement

SOFTWARE LICENSE AGREEMENT

This software License Agreement ("Agreement") is entered into between
CommonGround Softworks, Inc. ("Licensor") and the purchaser ("Customer") of the
software.

DEFINITIONS

Software: The term "Software" shall mean the computer program in object code only and
any user manuals downloaded from the Licensor's web site or provided by the Licensor.
The term "Software" includes any corrections, bug fixes, enhancements, updates or other
modifications, including custom modifications, to such computer program and user
manuals.

Registration Codes: Registration Codes are values necessary to operate the Software,
which are sent by Licensor to the Customer by e-mail or in writing after Customer has
received the software.

Qilan Developer: The Qilan Developer is an application package that creates and/or
modifies a project file which is a specialized document that defines data logic, input
and/or output screens and schema relationships with one or more back-end data bases.

Qilan Engine: The Qilan Engine is a common gateway interface (cgi) and/or fast
common gateway interface (fcgi) that runs project files created by the Qilan Developer.

LICENSE

Grant of License: Licensor grants Customer, pursuant to the terms and conditions of this
agreement, a perpetual, nonexclusive, nontransferable license to use the Software with
the Qilan Developer, if purchased, and Qilan Engine, if purchased.

Restrictions on Use: Customer agrees to use the Software, including the Qilan Developer,
if purchased, and Qilan Engine, if purchased, only for Customer's own business.
Furthermore, installation of the Qilan engine is limited to one (1) machine per license.
Customer shall not permit any parents, subsidiaries, affiliated entities or other third
parties to use the Software, including the Qilan Developer, if purchased, and/or Qilan
Engine, if purchased. However, if, and only if, Customer is a Value Added Reseller
(VAR) and has entered into a VAR agreement with Licensor, then, and only then, may
the Customer sell the Software, including the Qilan Developer, if purchased, and the
Qilan Engine, if purchased, to a parent(s), subsidiary(s), affiliated entity(s) or other third
parties. Any sales by a VAR to a third party or parties can only be made if subject to the
restriction to the third party buyer(s) that installation of the Qilan engine is limited to one
(1) machine per license. Furthermore, the allowance to copy, backup, and transfer the
software subject to the terms of this entire agreement shall not in any way modify the

Page 6

restriction that installation of the Qilan Engine is limited to one machine per license.

Copies: Customer, solely to enable it to use the license for the items purchased, including
the Software, including the Qilan Developer, and the Qilan Engine, may make only those
copies necessary for archival and back-up purposes provided that any copy made shall
include Licensor's copyright and any other proprietary notices. Customer shall have no
other right to copy, in whole or in part, these items except in the sale of its services to
another party in which case such copy shall include Licensor's copyright and other
proprietary notices. Any copy of the Software, including but not limited to those named
above, made by Customer for whatever reason is the exclusive property of Licensor.

Modifications, Reverse Engineering: Customer agrees that only Licensor shall have the
right to alter, maintain, enhance or otherwise modify the Software, Qilan Developer,
and/or Qilan Engine. Customer may modify the Software only within its services to
another party as part of its business. Customer shall not, at any time, disassemble,
decompile or reverse engineer the Software's computer program, including the Qilan
Developer, and/or Qilan Engine.

Material Terms and Conditions: Customer specifically agrees that each of terms and
conditions of this Section are material and that failure of Customer to comply with these
terms and conditions shall constitute sufficient cause of Licensor to terminate this
Agreement. The presence of this Subsection shall not be relevant in determining the
materiality of any other provision or breach of this Agreement by either party.

DELIVERY, INSTALLATION, DATA CONVERSION, AND ACCEPTANCE

Delivery: It is understood that Licensor shall deliver the Software, including the Qilan
Developer, if purchased, and/or the Qilan Engine, if purchased, to Customer through the
Internet and by Customer downloading said above items. Acceptance of any or all of
these items and installation of Registration Codes means that Customer agrees to all the
terms and conditions of this Agreement.

Data Conversion: Customer shall be solely responsible for data conversion, data entry
and verification of data.

LICENSE FEE

In General: In consideration for the license(s) granted by Licensor under this Agreement
Customer shall pay Licensor fee(s) as set forth on the Customer's web site at the time of
purchase.

Taxes: Customer shall, in addition to the other amounts payable under this Agreement,
pay all sales, uses, value added or other taxes, federal, state or otherwise, however
designated, which are levied or imposed by reason of the transaction contemplated by this
Agreement.

Page 7

OWNERSHIP

Title: Customer and Licensor agree that Licensor owns all proprietary rights, including
patent, copyright, trade secret, trademark and other proprietary rights, in and to the
Software, including the Qilan Developer, if purchased, and/or Qilan Engine, if purchased,
and any corrections, bug fixed, enhancements, updates or other modifications, including
custom modifications, to the Software, Developer, and/or Engine, whether made by
Licensor or any third party.

Transfers: Under no circumstances shall Customer sell, license, publish, display, or
distribute to a third party the Software, including the Qilan Developer, if purchased,
and/or Qilan Engine, if purchased, or any copy thereof, in whole or in party, without
Licensor's prior written consent. Customer may then make said transfer of any or all of
the above stated items to a third party if, and only if:

Any and all original documentation and user manuals are transferred at the same time as
the Software, including the Qilan Developer, and/or Qilan Engine;

The transferee agrees to and assumes all responsibilities of this agreement and so
acknowledges in writing to the Licensor, and

Customer notifies Licensor in writing prior to the transfer. Licensor reserves the right to
void any transfer in its sole discretion.

PROPRIETARY INFORMATION

Customer agrees that the Software, including the Qilan Developer, and Qilan Engine,
contains proprietary information, including trade secrets, know-how and confidential
information, and that is the exclusive property of Licensor. Customer shall not disclose
any such proprietary information concerning the Software, including the Qilan
Developer, and/or Qilan Engine without the prior written consent of Licensor.

WARRANTY

Scope of Warranty: Licensor warrants to Customer that, for a period of ninety (90) days
commencing upon the sending of the Registration Codes, the Software, including the
Qilan Developer, and/or Qilan Engine will substantially comply with the specifications
set forth in the Software Manual. During this warranty period, Licensor shall provide the
Customer with technical support. After expiration of the warranty period, Licensor may
provide support and maintenance for the Software pursuant to the terms of any
Maintenance Agreement entered into between the parties.

Disclaimer of any Other Warranty: THE LIMITED WARRANTY SET FORTH IN THE
ABOVE SUBSECTION IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Page 8

LIMITATION PERIOD

No arbitration or other action under this Agreement, unless involving death or personal
injury, may be brought by either party against the other more than one (1) year after the
cause of actions arises.

NO CONSEQUENTIAL DAMAGES

Licensor shall not be liable to Customer for indirect, special, incidental, exemplary or
consequential damage (including, without limitation, lost profits) related to this
Agreement or resulting from Customer's use or inability to use the Software, including
the Qilan Developer, and/or Qilan Engine arising from any cause of actions whatsoever,
including contact, warranty, strict liability, or negligence, even if Licensor has been
noticed of the possibility of such damages.

LIMITATION ON RECOVERY

Under no circumstance shall the liability of Licensor to Customer exceed the amounts
paid by Customer to Licensor under this Agreement.

INDEMNIFICATION

Licensor shall indemnify and hold harmless Customer from and against any claims,
including reasonable legal fees and expenses, based upon infringement of any United
States copyright or patent by the Software, including the Qilan Developer, and/or Qilan
Engine. Customer agrees to cooperate fully with Licensor during such proceedings.
Licensor shall defend and settle, at its sole expense, all proceedings arising out of the
forgoing. In the event of such infringement, Licensor shall replace, in whole or in part,
the Software, including the Qilan Developer, and/or Qilan Engine with a substantially
compatible and functionally equivalent computer program or modify the Software to
avoid the infringements.

TERM AND TERMINATION

Effective Date: This Agreement and the license granted hereunder shall take effect
immediately upon receipt of the Registration Codes for the Software.

Termination: Each party shall have the right to terminate this Agreement and the license
granted herein upon the occurrence of the following events (an 'Event of Default'):

In the event the other party violates any provisions of this Agreement; or

In the event the other party terminates or suspends its business, becomes subject to any
bankruptcy or insolvency proceeding under Federal or state statute, becomes insolvent or
subject to direct control by a trustee, receiver, or similar authority, or has wound up or

Page 9

liquidated, voluntarily or otherwise.

Notice and Opportunity to Cure: Upon the occurrence of an Event of Default, a party
shall deliver to the defaulting party a Notice of Intent to Terminate that identifies the
Event of Default. If the Event of Default remains uncured for thirty (30) days, the party
may terminate this Agreement and the license granted herein by delivering to the
defaulting party a Notice of Termination, by e-mail or in writing, that identifies the
effective date of the termination, which date shall not by less than thirty (30) days after
the date of delivery of the Notice of Intent to Terminate.

Procedure: Within ten (10) days after termination of the license, Customer shall delete or
destroy all copies of the Software, including the Qilan Developer, and/or Qilan Engine.

ASSIGNMENT

Customer shall not assign or otherwise transfer the Software, including the Qilan
Developer, and/or Qilan Engine or this Agreement to anyone, including any parent,
subsidiaries, affiliated entities or third party, or as part of the sale of any portion of its
business, or pursuant to any merger, consolidation or reorganization, without Licensor's
prior written consent.

FORCE MAJEURE

Neither party shall be in default or otherwise liable for any delay in or failure of this
performance under this Agreement if such delay or failure arises by any reason beyond its
reasonable control, including any act of God, any acts of the common enemy, the
elements, earthquakes, floods, fires, epidemics, riots, failures or delay in transportation or
communications, or any act or failure to act by the other party or such other party's
employees, agents or contractors; provided, however, that lack of funds shall not be
deemed to be a reason beyond a party's reasonable control. The parties will promptly
inform and consult with each other as to any of the above causes, which in their judgment
may or could be the cause of a delay in the performance of this Agreement.

ARBITRATION

The parties shall settle any controversy arising out of this Agreement by arbitration in
New Hampshire in accordance with the rules of the American Arbitration Association. A
single arbitrator shall be agreed upon by the parties, if the parties cannot agree upon an
arbitrator in witting thirty (30) days, then the parties agree that a single arbitrator shall be
appointed by the Americans Arbitration Association. The arbitrator may award attorneys'
fees and costs as part of the award. The award of the arbitrator shall be binding and may
be entered as a judgment in any court of competent jurisdiction.

GENERAL PROVISIONS

Complete Agreement: The parties agree that this Agreement is the Complete and

Page 10

exclusive statement of the agreement between the parties, which supersedes and merges
all prior proposals understandings, and all other agreements, oral or writing, between the
parties relating to this Agreement.

Amendment: This Agreement may not be modified, altered or amended except by written
instrument duly executed by both parties.

Waiver: The waiver or failure of either party to exercise in any respect any right provided
for in this Agreement shall not be deemed a waiver of any further right under this
Agreement

Severability: If any provision of this Agreement is invalid, illegal or unenforceable under
any applicable statute or rule of law, it is to that extent to be deemed omitted. The
remainder of the Agreement shall be valid and enforceable to the maximum extent
possible.

Governing Law: This Agreement and performance hereunder shall be governed by the
laws of the State of New Hampshire.

Read and Understood: Each party acknowledges that it has read and understands this
Agreement and agrees to be bound by its terms.

Read and Understood: Each party acknowledges that it has read and
understands this Agreement and agrees to be bound by its terms.

Page 11

Acknowledgements

Qilan is a registered trademark of CommonGround Softworks, Inc.

Osmosis Gateway is a trademark of Soft Breeze Systems.

OpenBase is a trademark of OpenBase International.

FrontBase is a trademark of Frontline Software.

Oracle is a trademark of the Oracle Corporation.

Helix is a trademark of Helix Technologies.

FileMaker is a trademark of FileMaker, Inc.

Paradox is a trademark of the Corel Corporation.

MSSQL is a trademark of the Microsoft Corporation.

Informix is a trademark of the IBM Corporation.

Sybase and jConnect are trademarks of Sybase Inc.

Macintosh, Mac OS X, and Mac OS X Server are trademarks of Apple Computer, Inc.

JDBC and associated logo are trademarks of Sun Microsystems, Inc.

Qilan binary code includes work based on Software developed by Omni Development.

Original, unmodified binary code is available at:

http://www.omnigroup.com/community/developer/sourcecode/

Omni Development makes no warranties express or implied, including, without
limitation, the implied warranties of merchantability and fitness for a particular
purpose. Under no circumstances shall Omni Development be liable to you or
any other person for any indirect, special, incidental, or consequential damages of
any kind related to or arising out of your use of the software, even if Omni
Development has been informed of the possibility of such damages.

The MSSQL JDBC driver is copyrighted by ThinWEB Technologies Corporation,
Copyright © 2001.

The RmiJdbc JDBC Driver is copyrighted by the Free Software Foundation, Inc.,
Copyright © 1991, 1999

We wish to thank Scott Keith (OpenBase International) and Geert Clemmenson
(FrontBase Software) for their cooperation and assistance in the development of the Qilan
Adapters.

We also want to personally thank the many developers and supporters who believed in
the Qilan vision.

Page 13

Documentation Icons

Instruction/Guidance

Techniques are explored and developed using concrete examples.

Helpful Hints

Ideas and suggestions to make using Qilan easier.

Special Feature

Unique Qilan capabilities or other distinctive characteristics.

Caution

What to look out for or other items needing special attention.

Hacker’s Advice

When you want to get ‘technical’. Suggestions to enhance Qilan’s
functionality.

Knowledge of UNIX Helpful

Suggested readings or topics that might prove helpful.

Knowledge of HTML Helpful

Suggested readings or topics that might prove helpful.

Page 15

Introduction (Pronounced: kai´·lan)

Qilan is a database system designed to operate on a web server. It is a
complete environment for the creation of user entry/output screens, logical
data manipulation and data base access. With Qilan, the developer can
easily link SQL database engines with the world wide web.

Qilan can be used by developers who don't like to program. Developers do
not have to know or rely upon SQL or remember complicated or intricate
symbols to create complex queries, manipulate data, or access databases.

Qilan works with your existing databases and web development tools.
Developers merely need to create an access to their database. Qilan provides
the tools to build complete professional web-based applications based on
that data.

Qilan is fully extensible. Internet users can interact with scripts (UNIX,
Perl, C, etc.) to run external routines, acquire data or execute automated
processes.

The Qilan development environment is a native Mac OS X application. The
Qilan engine is designed to run in concert with a web server as a traditional
CGI or FastCGI on Mac OS X.

A FastCGI is a high performance, scaleable, web server interface that
offers many advantages over the traditional CGI. We encourage you
to read about FastCGIs and learn about how to optimize performance,
and make the most of the many available features. My favorites
include speed improvements, load distribution and the ability to have
a web server in one location and the fcgi in another.

Here is a web site that offers lots of useful information:

http://www.FastCGI.com/

Refer to the Appendix, at the end of this manual, for specific
instructions as to how to obtain, install and configure FastCGI.

Page 16

Hardware/Software Requirements

Qilan (v2.8.1) runs native on Mac OS X or Mac OS X Server; version 10.3.x
or higher (Darwin Kernel) is required. We suggest you have a minimum of
128 megabytes of RAM. Additional RAM should be considered if you plan
to build a complex project or serve a large number of web users.

Did you know you can develop a Qilan project, server web users, run
a database and use your computer for other tasks, all at the same time!
Actually, Mac OS X makes this all possible. If you plan to do this,
get yourself lots of RAM.

Qilan consists of two separate applications: The Qilan Developer and the
Qilan Engine.

Qilan Developer (Qilan.app) is used to create Qilan projects and is
automatically installed in /Applications. A project contains
input/output screens (HTML), links to back-end databases and data logic.

For development (Qilan Developer), we suggest a 19-inch or larger monitor

The Qilan Engine runs as either a traditional cgi (common gateway
interface) or as a fcgi (fast common gateway interface). An engine is
automatically installed into /Library/WebServer/CGI-
Executables and Library/WebServer/FCGI-Executables.
Mac OS X automatically installs the Apache web server (sometimes referred
by ‘httpd’) by default, but you may need to activate it in the Sharing
Preferences Panel. Refer to your system documentation for details.

If you choose to operate Qilan as a cgi, no additional installations or
configuration is necessary. The engine is referenced as follows:

cgi-bin/qilan.cgi

Page 17

If you choose to operate Qilan as a FastCGI, please refer to the Appendix for
installation and configuration details. Installation of FastCGI will modify
your httpd.config file and add additional items to /Library/Qilan/.
The fcgi engine is referenced as follows:

fcgi-bin/qilan.fcgi

We recommend the use of a high quality backend SQL engine for optimum
performance. Databases may be located on any machine on the same
Internet or Intranet as the Apache web server. Communication is via
TCP/IP. Databases, such as OpenBase, FrontBase, FileMaker, Helix RADE,
MS SQL, MS Access, MySQL, Paradox, Informix, Sybase and Oracle,
amongst others, are accessible via Qilan. Please check our website at
www.qilan.com for an updated list of supported databases.

Qilan can access multiple databases, local or remote, singularly or
simultaneously. All that is required is logon information and
appropriate database schema.

Qilan communicates to most databases via JDBC (Java DataBase
Connectivity). Qilan will automatically install compatible database JDBC
adapters. Database companies frequently update their software so be sure to
obtain the most recent JDBC adapter from your database supplier.

Helix RADE is an exception, as it does not natively support JDBC.
We supply a bridge application, “Osmosis Gateway”, that links Qilan
with Helix RADE. Please refer to the Appendix for additional
connectivity information.

We suggest you visit http://java.sun.com/products/jdbc/ for
information about JDBC technology and updated listings of JDBC drivers.

If you download a newer driver than those supplied with Qilan, be sure you
place the driver in /Library/Java/Extensions and name it exactly
as the one you are replacing.

When replacing JDBC drivers, insure permissions are correctly set.
Qilan requires that at a minimum, the owner, group and everyone be
granted read access.

Page 19

Installation

Installing Qilan is easy and straightforward.

Insure you are logged in as a “System Administrator”. You can verify your
user status by opening the User Preference Panel.

Have you registration keys handy, as the installer will request them.

The Qilan install package is typically compressed, so you might have to
decompress it before it can be installed. To do this, locate UnStuffit® or
OpenUp® and decompress the file.

UnStuffit is included with Mac OS X; OpenUp is available from
www.stepwise.com.

Page 20

After the file has been expanded, its icon will change to a package. Now,
double click on the package icon and the installer program will be launched.

The installation process is automated and will lead you through a number of
screens.

Registration

Qilan is registered by registrant name, product type/version, IP or MAC
address, and expiration date (if any). These items are then used to generate a
registration code. Codes can be obtained by visiting the CommonGround
website, www.qilan.com, and navigating to ‘Registration Codes’.

If a DEMO code is requested or provided, the Qilan engine will only
respond to local requests and may be subject to expiration.

The Qilan Developer is not linked to a specific machine although a valid
name and code is required during registration. The Qilan Engine (cgi/fcgi),
in addition to a valid name and code, is linked to a specific IP or MAC
address.

During the installation process, you will be asked to register. Have your
registration name and codes available. The Registrar application will open
automatically.

Page 21

Select the product type: Qilan Developer or Qilan Engine; then type/paste
your registration name and code as provided by CommonGround Softworks,
Inc. The name under which the product was registered and code must be
entered exactly as provided. Click ‘Register’ when you are finished with
your entries.

The Registrar will not alert you to invalid registration codes. You will
be informed of invalid registrations upon opening the Qilan
application or accessing a Qilan webpage.

When the installer displays the license agreement, take a moment and read it
thoroughly. It contains important information as to your rights and
obligations. CommonGround Softworks, Inc. wants you to enjoy and
prosper with Qilan, but will aggressively enforce the provisions of the
license agreement.

When you are ready to continue, click, “Continue”. The installation process
will finish automatically.

QilanRegistrar is used to register the Qilan Developer and/or the
Qilan Engine independent of the installation process. It may be used
separately if additional registrations are desired or necessary. It is
installed in:

/Applications

The Registrar is a very simple application. When launched, you will be
asked to identify the product you wish to license and enter your registration
name and code. If a license exists (current or expired), it will be shown.
After you make your entries, click “Register”, and then quit.

Page 22

Updating a Project

Qilan projects may need to be updated due to the inclusion of new features
or changes the file format. When this becomes necessary, a dialog will be
presented upon opening the project with the Qilan Developer.

Updating a project file will temporarily convert the file, then open it. If you
wish to make the update permanent, choose File > Save. This will discard
the temporary copy. Optionally, choosing File > Save As… will save a copy
of the updated project without affecting the original (unupdated) project.

Closing the project without saving will maintain the project without it being
updated.

Updating a project file will make is unreadable by earlier versions of
the Qilan Developer and Qilan Engine.

Plug-Ins

From time to time, additional features and/or adapters may be made
available from CommonGround Softworks via plug-ins. Plug-ins are
specialized files useable only by Qilan. Both the Qilan Developer and Qilan
Engine require separate plug-in files.

Plug-Ins are placed in /Library/Qilan.

Page 23

The Qilan Schema Overview

A client browser accesses a project template on the web server. The page is
processed by the Qilan Engine (qilan.cgi). Processing may include database
access; followed by a client return.

Project templates are specially formatted WebTemplates ‘exported’ by the
Qilan Project. The Qilan Project imports/exports database schema, controls
and manipulates database logic and formats the client response.

Client
Browser

DataBase(s)

Web Server

Qilan Engine

Qilan Developer

Qilan Project

Project Templates

Page 25

Qilan Icons and Windows

Object Hierarchy

Qilan uses an object hierarchy. A Qilan object can be seen either closed (as
an icon), or open (as a window).

Windows function as ‘containers’. For example, the project window (shown
above with the palette to the left) contains the access, the access window
contains the table, and the table window contains fields, relationships and
abacus expressions. There is an implied dependency relationship, namely,
the table window is dependent upon the access window and the access
window is dependent upon the project window. Visually however, any
window may remain open (or docked) regardless of the state of parent
window.

If you have multiple windows open, refer to the window title bar for
the full path (parent to child). If you quickly want to return to or open
the parent window just select, Icon > Parent Window, while a child
window is active or an icon is highlighted.

Page 26

Icons, which are used by or contained within other objects, cannot be
discarded. Icons used by another object, will display a value greater than
zero in its ‘home’ window under the “Uses” column. You can ascertain
where and how an icon is used by double clicking the ‘Uses’ column. See,
“Icon Uses” in the following section.

Icons, which contain other objects, for example, the access, and framework
icons, cannot be thrown away if they hold other objects.

Page 27

Project

The Project window contains all the elements necessary for access, control,
design and manipulation of database data. It is the main (parent) window
and contains Access and Framework icons. If the project window is closed,
you will be prompted to save your work then all of it’s related windows will
close.

Access

The access icon refers to an existing database. It contains logon
information, a representation of a database schema (tables/fields) and Qilan
objects used to manipulate database data.

Page 28

Access Table

An Access Table is a graphical presentation of an external database
structure, namely the “table” or “relation”. A database consists of one or
more tables, which may be logically related to one another.

A database table does not really exist in Qilan, but rather is
represented by Qilan. The actual table structure exists in the database.
This approach allows you the freedom to create logic without having
to worry about connection issues.

When Qilan references a table in a database, it does so via its ‘External
Name’.

External Name: This is the name of the table, as it will be known
by the database. Qilan will link to this table, by name, when data is
retrieved, updated, deleted or created. Therefore, you should not
change this name unless you also change the corresponding table
name in the database. If you are creating a new table, insure the table
created in the database has the same name. External Names are case
sensitive.

External table names are required and cannot be left blank; they also
must be unique for each database. You will receive errors if they are
left empty or are not unique. It is also suggested that names not
contain spaces and be kept as short as possible.

Qilan references an access table by its name, as entered in the Access
window.

Page 29

Access Field

Fields represent the storage mechanism for data elements and are
represented within tables. Fields are designed to store data as dates, flags,
strings or numbers (floating point and integers).

Field types specified by the database are accessible by Qilan.

A table field does not really exist in Qilan, but rather are represented
by Qilan. The actual field exists in the database.

When Qilan references a field in a database, it does so via its ‘External
Name’.

External Name: This is the name of the field, as it will be known
by the database. Qilan will link to this field, by name, when data is
retrieved, updated, deleted or created. Therefore, you should not
change this name unless you also change the corresponding field
name in the database. If you are creating a new field, insure the field
created in the database has the same name. External Names are case
sensitive.

External field names are required and cannot be left blank; they also
must be unique for each table. You will receive errors if they are
empty or are not unique. It is also suggested that names not contain
spaces and be kept as short as possible. SQL compliant databases will
return errors if reserved words are used as field names. Please refer to
the Appendix for a complete list of reserved words.

Unlike tables, most databases offer additional field specifications, such as
type, width, precision, etc. Please refer to Field Specifications for more
information.

Page 30

Access Relationship

A relationship defines a link or connection between record fields; there is an
implied state of equality. The link may be within the same table or between
two different tables, but always within the same database.

Relationships are not actual database structures, as with tables or fields, but
derived values created by Qilan.

 Qilan goes beyond the traditional relationship concept used by many
databases. For example, depending up the sophistication of the
database, Qilan will support concatenated, derived and ‘on-the-fly’
links. In addition, Qilan supports relationship semantics.

Access DataFlow

DataFlows define data movement. Based on a relationship link, a dataflow
uses that link to replace data in the target table. Dataflows are triggered or
activated by specific ‘Q’ tags on the WebTemplate. Access dataflows are
used specifically to move data from one table to another table within the
same database.

DataFlows are not actual database structures, as with tables or fields, but
derived values created by Qilan.

Page 31

Access Abacus

Abacus expressions manipulate database data. They are used to query,
format, logically handle data fields and/or process other abacus expressions.

Abacus expressions are not actual database structures, as with tables or
fields, but derived values created by Qilan.

Framework

Frameworks are Qilan structures that are analogous to database tables. They
may contain fields, abacus expressions, relationships, dataflows and most
importantly, WebTemplates. In contrast with Access tables, there are two
very important differences:

• Although frameworks contain persistent structural elements, such as
fields, they are only accessed during qilan.cgi execution; and

• Framework ‘data’ is temporary. Frameworks do not store data, but rather
act upon it. The WebTemplate, when properly configured, triggers all
actions, which occur during qilan.cgi execution.

You can create as many frameworks as you need. Now that’s said,
when do need to create more than one? This is not a simple answer.
A framework can serve many uses from design organization to
functional groupings. As a general rule, think of a framework as the
background ‘support’ for a WebTemplate. If one or more
WebTemplates tend to share the same set of objects (fields, abacus
expressions, etc.), then they should all be in the same framework.
However, do not over do it! In later chapters, we will discuss how to
share data between frameworks.

Page 32

Framework Field

Framework fields represent transient storage objects for HTML INPUTs,
assigned values and various input/output mechanisms. They are not ‘typed’
and can be of any size (up to the maximum file size for your operating
system). Framework fields can be designated as session variables. Please
refer to the section on Sessions for more information.

Framework Abacus

Abacus expressions manipulate data. They are used to evaluate, format,
logically handle data fields and/or process other abacus expressions.

Framework Relationship

A relationship defines a link or connection between framework data and
table record fields; there is an implied state of equality. The link is always
between framework data and a specific database table.

Framework DataFlow

DataFlows define data movement. Based on a relationship link, a dataflow
uses that link to replace data in the target table. Dataflows are triggered or
activated by specific ‘Q’ tags on the WebTemplate.

Page 33

Framework WebTemplate

WebTemplates have four primary functions:

• WebTemplates format user and database data (input/output). Qilan
defaults to using HTML, but with proper modifications, any DTD can be
used.

• WebTemplates retrieve database data. Data can be queried using a flag
formatted abacus icon or with standard SQL. Fields or derived values are
accessible as well as standard summary functions.

• WebTemplates store/update database data. Using relationships and
dataflows, data can be created, updated, deleted or transferred from one
database to another.

• WebTemplates logically manipulate data and program execution. Using
the wide variety of ‘Q’ tags, logical steps can be created to test, evaluate,
loop or control procedural constructs.

A Framework may have as many WebTemplates as the designer requires.
Icons created in the Framework may be used by more than one
WebTemplate.

In a very real way, the WebTemplate is where is ‘all comes together’.
The Qilan engine executes the WebTemplate. All your formatting,
actions, procedures and logic must be present or linked to the
WebTemplate. Later on you will learn more about WebTemplate ‘Q’
tags. It is by strategically using these tags that Qilan objects are
accessed and triggered.

Page 35

Customizing the Toolbar

Qilan windows can be customized by adding text and/or icons to the window
toolbar.

Toolbar icons refer to menu commands. If a menu item is dimmed, the
corresponding toolbar icon will dim. To add or remove tool bar items,
choose, “Customize Toolbar…” from the Icon menu with the window open
and active. A palette of icons will then appear.

Page 37

Icon Uses

Qilan provides an easy way to determine where and how an icon is used by
another icon. This is referred to as, “Uses”. Windows that display a Uses
column, Project, Framework, Access and Table, show a numerical value.
This number corresponds to the number of times that icon is used by another
icon. Double clicking on the number will open the Uses window as shown
below:

Page 38

The Uses window is divided into two panes. The upper pane lists ‘parent’
icons – those icons using the selected (or child) icon. Highlighting a parent
icon shows how the ‘child’ icon is used in the lower pane.

While viewing the lower pane, double click on the selected icon to open the
enclosing object. The selected icon will be highlight and centered.

This is a great way to locate an icon being used in a WebTemplate.
As your projects grow in complexity, an icon can become lost among
similarly names icons. This feature comes to the rescue.

Double clicking on a parent icon opens the icon for review or editing.

If you want to see where and how a parent icon is used, in other words, see
its parent, highlight the parent icon and select, “Uses…” from the Icon
menu. Alternately, highlight the parent icon and use the command key
equivalent: command–option–U.

Inside other windows, such as the abacus or WebTemplate, the Uses window
can be accessed by first highlighting the icon, then selecting, “Uses…” from
the Icon menu. Alternately, highlight the icon and use the command key
equivalent: command–option–U.

Parent Icon

All icons, except the Project itself, belong to a parent. For example,
WebTemplates belong to the Framework and tables to the Access. When
you have many windows open on the screen at the same time, it is often
useful to identify the parent icon. Qilan will open the parent icon for any
icon in any window by first selecting the icon, then choosing, “Parent
Icon…” from the Icon menu.

Alternately, you may use the key combination, control – command – P.

Page 39

Copy/Paste Icon

Qilan icons can be duplicated, copied, pasted or dragged within or between
windows, or between projects. When an icon is created via a paste, drag or
duplication, Qilan will also attempt to create referenced icons. For example,
if an abacus expression contains a field, that field will also be created when
the abacus expression is copied from one Framework to another Framework.

Copy/Paste operates differently depending upon whether a parent or child
icon is copied. Parent icons, Frameworks, Accesses and Tables ‘own’ other
icons. When a Framework is copied, for example, all the child icons and
their dependencies are also copied.

However, if a child icon is copied, such as a WebTemplate, referenced icons
are created in name only. For example, if a WebTemplate, containing an
abacus expression, is copied from one Framework to another, a new
WebTemplate and abacus will be created, but the abacus itself will be
empty.

To insure the contents of the parent icon is copied, copy or drag the
parent and child icons together by holding down the command key,
then selecting the desired icons.

If an icon is duplicated, pasted or dragged into a window containing an icon
of the same name, the existing icon will be maintained and not replaced.
The newly created icon will be appended by a numerical increment (i.e.,
field, field1, field2, etc.). The default naming convention for duplicated
icons is to add a numerical increment to the name of original icon.

Icons created, pasted or duplicated in an Access or Table, will be created
with the same external names and parameters as the original icons. Before
you export the database schema, insure you review icon parameters so as to
avoid duplicate external names. Qilan names and links will be maintained.

Page 40

Expressions created in abacus windows can be copied/pasted or dragged into
other abacus windows. To copy an expression, highlight the surrounding
parenthesis then select Copy, from the Edit menu. You may select any
portion of an expression, including just an operand or icon. To paste the
expression, open an empty abacus window and select Paste, from the Edit
menu. If the abacus you are pasting into has an existing expression, the
newly pasted expression will be placed into the lower portion of the window.

Page 41

Dragging an Icon

Dragging an icon has the same meaning as copy, then paste.

To drag an icon, select it by highlighting it with the mouse. Then,
continuing to hold the mouse button down, drag it to the target window.

If the target window is ‘eligible’, a red square will appear. Release the
mouse button and the icon will be copied.

Page 42

Immediately after the drag is completed, any associated icons will be
created. In the example below, the field, “state”, contained or referenced the
WebTemplate is automatically created”.

Page 43

Copying an icon places it in temporary memory. If an eligible Qilan
window is then opened or activated, the paste command will be available.
Multiple icons (within the same window) can be copied by holding down the
Shift or Command key, then using the mouse to select the desired icons.

If you want or need to share project ‘snippets’, open an empty Project
window then drag or paste the desired icons. The new Project should then
be saved and distributed.

Page 44

If the icon being pasted has the same name as an existing icon, the pasted
icon will be renamed. The new name will be appended by a numerical
increment.

When naming field, use caution appending icon names with numbers.
Here’s what can happen… Assume you name an icon “field1”.
Duplicating “field1” will result in “field2”. But what happens if you
already have an icon named “field2”? Qilan will create “field3”. The
short story is that it can get very confusing.

Page 45

Global Preferences

The Qilan Developer maintains global preferences that apply to the way the
developer behaves. This is in contrast to Project Settings (following section)
that are applicable only to the open project.

Global preferences can be accessed from the Qilan menu by selecting,
“Preferences…”

At Startup Open refers to what project the Qilan developer will open when
the application is launched. There are three options:

Open last projects: The last saved project will be opened.

New project: An empty project will be opened.

Nothing: The application will be launched, but no project will be
opened.

Checking ‘Automatically Backup Open Projects’ will create a copy of the
open Project in the specified location at the selected interval. The option to,
‘Delete After’, refers to how long an interval backup will be retained. If this
option is set to ‘0’, the interval backups will never be deleted, thus resulting
in a new backup each time the project is opened. We recommend this
setting be greater than 0, depending upon the number of interval backups
you desire and available disk space.

Uncheck this option to prevent backup copies from being created.

Page 47

Project Settings

Project settings are accessed from Edit > Project Settings… Preferences are
divided into three panes: Access, WebTemplate and Execution. Clicking on
the tab to opens the pane.

The Access pane refers to those settings that effect the importation of the
data base schema.

Beautify Names on Import

When the database schema is imported, Qilan can adjust the names so
that they are more readable. Designers of SQL databases sometimes
use cryptic names for tables and fields. Checking this option attempts
to make them more ‘English like’. Double clicking in the Value
column will display a check mark. This means the option is selected.

Use Settings as Defaults

Click this button to use the settings made under this tab when new
projects are created.

Page 48

The WebTemplate pane refers to those settings that effect webtempate
defaults and overall operation.

New WebTemplate DTD (Document Type Definition)

Qilan ships with four standard html DTDs: 3.2, 4.0 loose, 4.0 strict,
and frameset 4.0. Each time a new WebTemplate is created, Qilan
refers to this setting to determine what type DTD will be used.

DTDs for existing WebTemplates cannot be changed.

A project can have a mixture of DTDs. Choose the DTD that best
matches your HTML design, client browser software and desired
functionality.

Four additional DTDs are available containing Helix specific ‘Q’ tags
corresponding to the traditional HTML DTDs. If you plan on
accessing Helix, you must use a Helix DTD.

Page 49

HTML File Root Directory

When a WebTemplate is exported for qilan.cgi execution, it must be
placed into a specific directory. This option allows you to specify that
directory. Click the Set… button to choose a directory or type the
directory path in the space provided.

Important Security Considerations

Exported WebTemplates are specially designed for the Qilan Engine.
These files contain sensitive data, such as login information, and must
be protected from unauthorized access. If you are not familiar with
designing access controls, we suggest you consult with a web server
specialist.

Regardless of the access restrictions you implement, we strongly
urge you to test and verify your configurations. Site security is a
highly complex issue and should be professionally reviewed on a
regular basis.

HTML File Extension

The default suffix used for HTML documents, when exporting
WebTemplates. The use of the suffix is optional, but may be useful in
identifying files of a certain type. Some applications, notably web
servers and browsers, use suffixes for MIME type extensions.
Entering ‘qln’, for example, will appear as, “myfile.qln”.

The extension is used in conjunction the WebTemplate icon name
when the WebTemplate is not given a specific HTML name.

Browser Test URL Prefix

This is the URL string (preceding the webtemplate name) that will be
used by the browser when previewing the webtemplate in a web
browser. Your default internet browser will be used as set in System
Preferences. Refer to the Apple System documentation for details.

Page 50

Export WebTemplate on Close

A WebTemplate is designed within the development environment, but
cannot be used unless it is exported. Check this option to
automatically export the WebTemplate each time the WebTemplate
window is closed. See the WebTemplate documentation for more
details.

Export All WebTemplates on Save

A WebTemplate is designed within the development environment, but
cannot be used unless it is exported. Check this option to
automatically export the WebTemplate each time the project is saved.
See the WebTemplate documentation for more details.

Use Settings as Defaults

Click this button to use the settings made under this tab when new
projects are created.

Page 51

The Execution pane refers to those settings that affect the Qilan engine and
how the WebTemplate is processed.

Session Timeout

This value determines how long Qilan will consider session files
valid, starting from the time the webtemplate was last accessed.
When a timeout is reached, the content of session files (framework
variables) will be marked as ‘expired’ and therefore no longer be
retrievable by the browser client. The default value is 60 minutes.

Page 52

Command Timeout

This value determines how long Qilan will wait for the script, as
identified by the QRUN commandline attribute, to return an output.
When this limit is reached (in the absence of any output), qilan.cgi
will terminate the requested script, and then continue with the
remainder of the WebTemplate. If the value is undefined or 0,
qilan.cgi will wait for an output (possibly forever) and is therefore not
recommended. The default value is 60 seconds.

The Command Timeout value, as set in Project Settings, will be used
only when a timeout is not selected as QRUN attribute.

Iteration Limit

The number of times the ‘Q’ tag, QWHILE, will be allowed to cycle.
If this value is undefined or 0, there will be no limit. When this limit
is reached, qilan.cgi will stop the QWHILE execution and report an
error to the user (via the browser interface). The default value is 200.

This value is also used as the abacus depth limit. For extremely
complex abacus constructions where many abacus expressions are
used within others, consider a moderate increase in this value.

Recursion Limit

This value limits the depth of abacus icons that can be invoked. If this
value is undefined or 0, there will be no limit. When this limit is
reached, qilan.cgi will stop the abacus execution and report an error to
the user (via the browser interface). The default value is 100.

Designers of recursive routines should be aware of this setting.
Extensive routines may fail if this value is set too low; on the other
hand, if set to 0, undefined or an extremely high value, poorly
constructed routines may consume processor cycles and appear to
freeze the CPU.

Page 53

Decimal Separator

The character used when numbers are formatted as decimals. Qilan
will default to a period (.) if no other character is identified. See the
abacus operator, "formatted by" for more details.

Thousands Separator

The character used when numbers exceed 999. Qilan will default to a
comma (,) if no other character is identified. See the abacus operator,
"formatted by" for more details.

If you are planning on installing Qilan on a machine located in a
foreign locale, the decimal and Thousand Separators can be used so
that numbers are formatted properly. You can always format numbers
individually using the “formatted by” abacus operator, but its much
easier just to set them once in the Project Settings.

Page 54

Debug SQL

This setting is used to log SQL submissions (via qilan.cgi) and
messages returned by the database. It may be helpful in tracking
down database errors, malformed SQL queries or other anomalies
resulting from communication failures. Logging is directed to the
Apache Error Log, located in /var/log/httpd/error_log.

There are three settings which operate in conjunction with the
DEBUG attribute of the QLOGIN tag as follows:

ALL: Every SQL statement will be logged regardless of the
QLOGIN DEBUG attribute.

NONE: No SQL statements will be logged regardless of the
QLOGIN DEBUG attribute.

SELECTED: SQL statements will be logged only for
QLOGIN tags that include the DEBUG attribute.

Logging SQL can create very large files; judicious use is advised.

Treat Empty as Undefined

This setting automatically converts empty values to undefined. An
empty value is normally considered defined (but valueless) and is
associated with HTML inputs. The conversion performed by
checking this preference occurs before abacus evaluations, therefore
expressions that test for empty (such as ‘Empty __’) will always
return FALSE.

If you are familiar with how databases handle data and expect
Qilan to function in a similar fashion, you should enable this
preference setting. Data inputs will automatically be
interpreted as defined or undefined.

Page 55

Log Errors

The name and location of the log file used to store error messages
output by qilan.cgi. When valid information is entered (existing path
and filename), the error output will be written to a log file; otherwise
the error output will appear on the client browser.

Valid log file information refers to a path, filename and correct
file name permissions. A sample approach is as follows:

• Create a folder named, “QilanLogs”, in /Library.
• Highlight the folder, and then choose ‘Get Info’. Set the
permissions so that any user can write to this file.
• Open Project Settings and type (or select) the path and name
of the log file: /Library/QilanLogs/QilanErrorLog.

When an error occurs, qilan.cgi will create a log filed named,
“QilanErrorLog”. As this file is created by qilan.cgi, it will
automatically have correct access permissions. If desired, you
may then remove write permissions from the folder.

Use Settings as Defaults

Click this button to use the settings made under this tab when new
projects are created.

Page 56

Errors written to the log file will be formatted as follows:

Each error will contain two or three lines. The first line starts
with a "+", followed by the date, time, IP address,
WebTemplated accesed, and ends with the error message.

+Jul 16 12:35:06 192.168.1.5 /Library/WebServer/Documents/EnterData
JDBCException The database specified has not been started or can not be found.
Your action has been aborted.

The second line starts with a "-", followed by the date, time,
and IP address, and ends with details about the error.

-Jul 16 12:35:06 192.168.1.5 {\n attributes = (\n "BORDER=\"1\"", \n
"TABLE=\"OpenBase/newtable\"", \n "FIELDS=\"<OpenBase/newtable/number1>
<OpenBase/newtable/text1> <OpenBase/newtable/_rowid>\""\n); \n errLineNo
= 44; \n tag = QTABLE; \n}

The third line is present only if there is some form input or a
query string. It starts with a "?", followed by the date, time, and
IP address, and ends with the inputs.

?Jul 16 12:35:06 192.168.1.5 {NumericalData = <null>; TextData = <null>; }

The second and third lines both have all CR characters replaced
by the sequence "\n".

You can view the error log remotely using system tools (remote terminal,
ftp, etc.), or use Qilan’s QRUN with ‘cat’ or ‘tail’.

Error Message

Typically, when qilan.cgi generates an error, a detailed output is
shown on the client browser (errors are produced by Qilan, Mac OS
X, JDBC or the database). This is the default for development.
However, when a project is deployed, an error message may be added
to or shown in place of the error output. The error message may
contain any character, including HTML codes.

Page 57

General Note Regarding Execution Settings

Changes to execution project settings should immediately be followed by,
“Export All HTML”. This will insure your changes are properly written to

all WebTemplates.

Page 58

Web Server Configuration

The following section discusses web server configuration; a basic
knowledge of the UNIX file system may be helpful. Refer to an
easily readable UNIX primer for details.

Qilan is fully compatible with the Apache web server, versions 1.x and 2.x.
We strongly suggest however, you use the most recent version of 1.3.x or
2.0.48 or higher. There are slight configuration differences between version
1.x and 2.x for FastCGI. Please refer to the Appendix for details and
complete instructions.

The Apache webserver, version 2.x, is a relatively new release. It is
included with OS X Server as an optional install, but is also available
from versiontracker.com (Faby distribution) as a complete installation
package. Which one should you use? I suggest you use the
installation package from Apple, as this is included with Mac OS X.
The package available from versiontracker.com includes a nice GUI
and is frequestly updated. By the way, Apache 1.3.x works great!

The default Apache web server configuration (standard OS X install) is to
identify the Documents directory as the ‘root’ folder. Therefore, the
Documents directory is set to allow unrestricted access. Any document
placed into Documents is retrievable, including exported WebTemplates.

Avoid exporting WebTemplates to the ‘Documents’ directory.

We suggest you create a directory that can only be accessed by qilan.cgi.
All other attempts to access an exported WebTemplate directly will be
denied.

The technique to be employed is simple, but does require some
configuration. We will be creating a directory and then restricting access to
non-http requests. This effectively blocks all access except that originating
from the server itself.

Page 59

The Apache web server is controlled by a series of files, the main one being
the ‘apache.conf’ file. On Mac OS X, this file has been renamed to
‘httpd.conf’. It is located in

/private/etc/httpd/

It is very important you maintain a backup of this file in the event you make
a mistake or need to revert back to the original. If you are unsure or uneasy
about making changes to the apache.conf file, please consult with a
specialist.

Most systems contain two configuration files: one used by Apache
and a backup. Make sure you edit the correct one. It’s not a good
idea to edit the configuration file when the web server is in use.The
first step is to create a directory inside Documents. Let’s call this new
folder, “Qilan”. Once this is done, change or create the Qilan
preference, “HTML File Root Directory”, to:

/Library/WebServer/Documents/Qilan

The second step is to create a small text ‘access file’ and place it within the
Qilan folder. The file’s name is important, “.htaccess”. Note the name
begins with a period. Its contents are as follows:

<Limit GET POST>
order deny,allow
deny from all
</Limit>

The file instructs the web server to ‘Limit’ (meaning prevent) access to the
files contained within the Qilan folder to all GET and POST requests via
http.

Page 60

The final step is to tell the web server to recognize and use .htaccess.
This requires changing the apache.conf file.

The following segment is taken from apache.conf. Again, if you are uneasy
about changing a configuration, consult with a specialist. Note that lines
beginning with the pound sign (#) are comments and not executed by
Apache.

Accessing the apache.config (httpd.config) on Mac OS X can
be a bit difficult as the path to the file starts with ‘private’, which is an
invisible folder. Launch TextEdit then select, “Open” from the File menu.
Type in the path to the error log (/private/etc/httpd/) then press the enter key.

Page 61

This section of the configuration file tells Apache what can be overridden
for directories located within the root folder.

Locate this line - do not change it.

<Directory "/Library/WebServer/Documents">

The following lines are present in the apache.conf file, and are shown for
reference. Do not change anything here.

#
This may also be "None", "All", or any combination of "Indexes",
"Includes", "FollowSymLinks", "ExecCGI", or "MultiViews".
Note that "MultiViews" must be named *explicitly* --- "Options All"
doesn't give it to you.
#
 Options Indexes FollowSymLinks

#
This controls which options the.htaccess files in directories can
override. Can also be "All" or any combination of "Options",
"FileInfo", "AuthConfig", and "Limit"

Here’s where we want to make our changes. First, the existing line:

 AllowOverride None

This line instructs the web server to ignore .htaccess files. In other
words, do not allow anything to override the default settings.

Change the line to:

 AllowOverride Limit

This line instructs the web server to recognize an htaccess file containing
Limit parameters, if the file is located inside the root directory. Note that
spelling and case are important.

Close apache.conf and save your changes, then restart the web server.

Clients will now access your exported Qilan documents using the URL:

Your_domain/cgi-bin/qilan.cgi/Qilan/HTML_document_name

Client attempts to access:

“Your_domain/Qilan/HTML_document_name”, will be forbidden.

Page 62

Accessing a Database

An Access window represents a User’s entrée to the database. It contains
information necessary for login, a representation of database tables and
fields, and logical structures necessary for database manipulation.

Bring the project window to the front, and then drag an access icon from the
palette. Double click to open it. An access contains two parts: the attributes
(top) and the schema (bottom).

Qilan employs JDBC (Java DataBase Connectivity) technology to interact
with database software. With appropriate adapters installed, Qilan will
import/export database schemas, pass SQL commands, retrieve data and
obtain information about the database.

Most JDBC adapters supplied by data base
manufacturers are written in JAVA and will run
without modification on OS X. Qilan will
recognize them when they are placed in
/Library/Java/Extensions.

Refer to the web site: http://java.sun.com/products/jdbc/ for more
information about JDBC and how to obtain adapters.

Page 63

Login attributes allow the user to select a database and configure the login
parameters for the user and administrator (schema user).

Choose a database from the pop-up menu, and then double click on the line,
“User Login” or “Schema Login” to open the database’s login panel.

A basic login panel (used by OpenBase):

Page 64

A more complex login panel (used by Front Base):

Databases, as defined by their JDBC drivers, may enable various options.
When options are available, Qilan will change the appearance of the Login
panel to support them.

Before you login, insure the database is running and you are permitted
to access it. Attempts to login to a non-existent database or one,
which is not running, will result in an error message.

For some databases, which use proprietary drivers, the JDBC database
driver is not automatically installed by Qilan and must be obtained
separately from the manufacturer. Attempting to access a database
without the requisite driver installed will result in an error message.

Complete the login information (note that names may be case sensitive
depending upon the database), including the name of the database, its
location (host name), user name and password. Then click, “Set”. This will
complete the connection information and return you to the Access window.

Page 65

The password entry will be echoed in bullets; insure the password is
typed correctly. The nature of this security provision is to prevent the
casual observer from viewing the password as typed by the developer.

The access window will then display the name of the database, host name
and user/schema name. The password will not be shown. If you need to edit
this information or re-open the Login window, just double click on the User
or Schema login line.

Access User

The access defines two types of users: Schema and Login. The Schema
user, used by Qilan, imports/exports database schema (tables and fields).
The Login user is used by Qilan to perform data entry, retrieval, updates and
deletion.

Schema User

This user, typically defined by the database as the ‘administrator’, has
access to all tables and permissions. The schema user imports and/or
exports database structure. It is necessary to define (or redefine) the
schema user and password prior to using Qilan’s import/export
schema functions. This is performed using the database manager
tools.

We strongly suggest you create at least one other user in addition to
the Schema User. Avoid defining the Schema User as the Login User
as this may create a security risk.

Page 66

Login User

An access defines a single login user. This user must have permission
to perform data operations called for by Qilan. For example, if a
QDELETE is used on a web template, the user (as referenced by
QLOGIN) must have permission to delete records; otherwise the
delete will fail. User permissions are set in the database.

Qilan provides several methods to define user names and/or
passwords:

Create multiple accesses, each with its own username and/or
password. This creates a static username and/or password
linked to a specific access.

Ask for a username and/or password when a client submits an
HTML request. This latter approach can be used with
QLOGIN attributes. See WebTemplate documentation for
details.

Dynamically generate a username and/or password drawn from
Qilan data (user data typed into an abacus) or from other
databases.

Although a login username/password is defined within the access
icon, it is considered the default. It is only used when no other
username/password is submitted via the QLOGIN.

Page 67

Importing the Database Schema

This function automatically builds a parallel representation of the
database structure within Qilan. Database tables and fields will be
imported. The table structure will appear at the bottom of the access
window. Double clicking on a table icon will open its structure so
that fields and relationships can be viewed.

To import a database schema bring the Access window to the front.
Complete the Schema Login information and insure the database is
running and available, then choose File > Import Schema. This
function works for JDBC compliant databases only. If a schema
already exists and you wish to update it based on a modified database,
just choose File > Import Schema. The schema will update showing
newly created database objects.

Note: Prior to updating a database schema, be careful not to
delete database tables or fields that are being used by Qilan. If
this becomes necessary, first remove all Qilan references to the
database object(s) then update the schema. Failure to do this
will result in errors.

Is it necessary to import a database schema to access tables and
fields in the database? The answer is no. All that is necessary
is that names and types (for fields) match. This little tidbit is
useful when you are accessing corporate database, those where
the system administrator does not want to give you schema
access or databases that do not support importing the schema.

Some databases, notably FileMaker, create ‘pseudo’ fields.
These are internal objects that are used by the database but are
not treated as ‘real’ fields. Qilan can access these objects with
parallel fields of the same name and type.

Page 68

Exporting the Database Schema

This function automatically builds a parallel representation of the
Qilan Access structure in the selected database. Access tables and
fields will be exported.

To export a Qilan Access schema, bring the Access window to the
front. Complete the Schema Login information and insure the target
database is running and available, then choose File > Export Schema.

Exporting a database schema works for most JDBC compliant
databases. If a specific database does not support exporting
schema, the Export Schema menu item will be disabled.

The export function compares database schemas. If you add a table or
field to Qilan’s schema, a corresponding object will be added to the
database. Modified objects are updated. If you delete an object in
Qilan, the corresponding data base object will be removed.

If an existing database table or field is deleted from the Qilan
schema, data contained within the database table (fields) or
the individual field will also be removed. Modifying field
formats may also unexpectedly change or truncate existing
data.

Be wise: back up your data prior to Export!

After choosing File > Export Schema, Qilan will present the “Export
Schema” window. This window will display the Qilan schema.
There are three options: Cancel, Update Now and Create Script.

Clicking Cancel will close the Export Schema window. Export
Schema will be aborted.

Clicking Update Now will immediately begin the export process. It is
suggested this be performed when there is low database activity.
Updating may cause the database to build indexes or other structures
causing temporary access interruptions.

Page 69

Export Schema Dialog:

Clicking Create Script will write all the database changes to a text file.
This file may be opened and edited (if necessary) or applied by the
database manager at a later time.

Page 70

Qilan will not export tables or fields whose external name is
undefined. Insure an external name is defined for all database objects
you are exporting.

Some databases automatically create internal fields whenever a table
is created. For example, OpenBase creates “_rowid”, as an internal
unique identifier for each table. To insure these fields are not altered
accidentally and to make them available in the Access, Qilan
immediately performs an Import Schema following each Export
Schema.

Page 71

Tables

The lower portion of the access window displays the database table
structure. If Import Schema is successful, the tables will appear
automatically. You can manually create tables by choosing Icon > New
Table. Only the tables you want to access are required. This permits you to
exclude certain tables that may contain sensitive information. If a table is
not present, Qilan cannot access its data.

Refer to the documentation on Qilan Icons for more information as to how to
manually create fields and abaci within tables.

When a Table is created within Qilan, an External Name is required. This
name will be used by the database to identify the Table. Table names within
a database must be defined and unique.

After typing the External Name, press the tab key. If you immediately close
the window after typing the External Name Qilan may not save your
changes and import/export errors may result.

Page 72

Data Base Compatibility

For users of FrontBase, please use version 2.22 or higher for OS X. Older
versions may result in SQL errors.

Download from: www.fontbase.com

For users of OpenBase, please use version 7.0 or higher for OS X.

Download from: www.openbase.com

For users of FileMaker, please use version 5.5 or higher for OS X.

Download from: www.filemaker.com

For users of Helix, please use version 4.5.5 or higher. While older versions
that support AppleEvents may work, we recommend downloading the most
current version.

Download from: www.helixtech.com

Please visit www.qilan.com for additional information concerning newly
added databases.

Page 73

Fields

Fields represent a carrying mechanism for data. That is, if a user enters a
piece of data (such as a name), it is placed into an object called a field. By
referencing the field, the data itself becomes accessible.

Framework fields are transient, the data represented by them is maintained
during qilan.cgi processing or with server session files; table fields, on the
other hand, represent persistent or stored, data.

Table fields refer to the storage of data in the database. The database defines
how data is actually stored. For example, if a user enters a number with no
decimal points, but the storage defines four decimal points, the data will be
stored with four decimal points. If this number is later retrieved from the
database, it will contain four decimal points.

The manner, in which data is stored, character, number, date, etc., is known
as the data type. Data types are important because they guard the semantic
integrity of the data; that is, to ensure that it reflects reality in a sensible way.
The integrity of the data is at risk if you can substitute a name for a
telephone number or if you can enter a fraction where only integers are
allowed.

Qilan will coerce formatted values retrieved from the database to more
generic forms. This is done so that data can be more easily manipulated or
displayed. The data itself is not actually changed nor is the storage format as
defined by the database.

Your choice of storage format will usually be based upon two criteria:
interpretation and space allocation.

Interpretation refers to the meaning of the data. Examples include
literal character strings, numbers and dates. Databases apply different
methods to data formats. Mathematical operations can be performed
on numbers, but not character strings.

Space allocation is performed automatically by the database, based
upon a field’s format. A database application is most efficient and
transferable when data sizes are fixed and minimized.

Page 74

Creating a New Table Field

With the Table window open (Project > Access > Table) drag a Field from
the palette into the Table window. Double click the Field icon to open its
window.

Page 75

External Name

This is the name of the field as known by the database. If you import
the schema, the database will complete this entry. If you are creating
a new field, check with your database documentation for naming
conventions or other restrictions on field names.

External Names for Fields must be defined and unique.

After typing the External Name, press the tab key. If you immediately
close the window after typing the External Name Qilan may not save
your changes and import/export errors may result.

External Type

The field’s format as known by the database. If you import the
schema, the database will select the proper type. If you are creating a
new field, select the type that most closely matches your storage
requirements. Note that some databases may have varied options as
well as refer to the same format with different wording. A reference
tutorial, concerning field formats, is provided in the Appendix.

Page 76

Type

Type refers to how Qilan will attempt to coerce the format as
specified by the database. If you import the schema, Qilan will select
the proper type. If you are creating a new field, select the type that
most closely matches the type specified by the database. Refer to the
Appendix for a coercion table.

Page 77

Primary Key

A field is considered a primary key when it is unique for each and every
record in a table. Databases typically index primary keys automatically.
Double click on the line to add/remove a check. When a checked, the field
will be a primary key; when unchecked, it will not be a primary key. If you
check more than one field in a table as the Primary Key, the concatenated
values of all the selected fields will be consider the Primary Key.

Some databases do not support more than one field as being identified
as the Primary Key. Consult your database documentation.

One question that inevitably comes up is how to create primary keys.
The best way to do this is not to create them at all, but let the database
do it for you. OpenBase and FileMaker do this automatically;
FrontBase does this by defaulting an integer field to UNIQUE
(although this must be done with the Manager.app). Can Qilan
perform this function? Actually, yes! A session ID is unique for the
machine running Qilan and can be used for primary keys. They will
always be character types and may be as long as 30+ characters.

Allows Null

This instructs the database to accept an undefined or empty field value. If
disallowed, the database will return an SQL error whenever an undefined or
empty value is passed and a record is created or updated. Double click on the
line to allow/disallow nulls. When a checked, nulls will be permitted; when
unchecked, nulls will be disallowed.

It is suggested that you use Qilan tools for evaluating undefined or
null values and set the database to allow nulls. Informative error
messages or other data operations can be created in Qilan, whereas the
database may only return cryptic error messages.

Page 78

Width

Double click on the line to enter a numeric value. Width refers to maximum
length of a character string. Please consult your database documentation for
maximum supported widths.

If you leave this blank for character data types, the database may
report an error or set the field width to zero (0) or one (1). Be advised
that changes to a field width, after one or more records is created, may
result in the erasure of all data in the field.

Object type fields are treated as strings, however a width need not be
entered as they typically support unlimited widths.

Precision

Double click on the line to enter a numeric value. Precision, used with
numerical types, defines the number of digits to be stored. The exact
definition of this setting is dependent upon which database and External
Type are chosen. Please refer to the reference documentation.

Scale

Double click on the line to enter a numeric value. Scale refers to the
fractional element of the data type. It is used with numerical and date/time
data types. The exact definition of this setting is dependent upon which
database and External Type are chosen. Please refer to the reference
documentation.

Locking Variable

Double click the line to designate this field as a ‘locking variable’. When
selected, a check mark will appear. Locking variables are used to create the
record snapshot for optimistic record locking (see Record Locking for more
information).

Page 79

Indexed

Qilan will request an index be built on the selected field when the schema is
exported. Depending upon number of records in the table, building an index
may take time and temporarily limit data base access. When checked, the
field will be indexed. If unchecked, the index will be dropped. There is no
need to index fields identified as Primary Keys; databases automatically
index these fields.

When should a field be indexed? In general, fields identified as
relationship ‘targets’ should be indexed. Fields containing defined
and varied data benefit from indexing especially when they are used
for searching or sorting. Be careful though, excessive indexing may
actually slow data base operations and/or substantially increase the
size of the database itself. Consult your database documentation for
additional information.

Qilan will automatically build indexes on fields identified as
relationship ‘targets’. This will automatically optimize database
performance. If you drop an index used as a relationship target, Qilan
will re-build the index when the schema is exported.

Indexes automatically built by Qilan, as the result of a relationship
target, will not be checked as ‘Indexed’ in the Access > Table > Field
window. The index will be built in the database.

Comment

User entered text.

Page 80

Framework Fields

Framework fields are transient, global values and, if designated, session
values. They may be used for temporary storage, processing, display,
calculations and maintaining session data.

To create a field, drag a field icon from the palette into framework window.
Name the field by highlighting its default name and retyping. This name
will be used whenever the field is referenced from within Qilan.

A Framework field that is set from the browser (either via Form data entry
or from the "QUERY_STRING") is always of type string. A framework
field that is set by a QASSIGN tag takes on the type of the value of the field
or abacus assigned to it.

Session Variable: Double click on the line to maintain the value of this field
throughout the session. A checkbox indicates the field value will be kept.

Session variables are stored by name. This can be very useful if you
want to pass session values from framework to framework or project
to project. All you have to do is name the fields the same. Remember
that field names are case sensitive.

Comments: User text that can be added to any field by double clicking the
field window.

Page 81

Framework Icon Limits

Each Framework should be limited to 256 fields. This is not an absolute
maximum, but pop-ups that allow for the selection of fields may only list the
first 256. There is no limit as to the number of icons a Framework may
contain.

Page 83

Relationships

Relationships (joins) define a state of data equality. Databases store
information in two-dimensional tables consisting of rows and columns.
Tables contain rows of data consisting of columns of simple data types such
as strings of characters, numeric data types, dates, etc. Databases usually
consist of more than one table. Tables are related to each other through
keys, columns that define uniqueness and references between tables. Access
to data that spans more than one table is called a join. Tables within the
same Access icon or from a Framework to any table can be joined.

Using the Relationship table1.link = table2.link, a record in table1 would
reference one or more records in table2.

A source link may be singular element (field), such as an ID# = ID#, or
compounded using multiple fields or abacus constructions.

When a link is compounded, all links (taken together) form the relationship.
For example:

Framework -> to -> DBTable

Source Target

ID# ID#

This relationship is defined as: ID# = ID#.

Page 84

If we add a new link:

Source Target

ID# ID#
LastName LastName

the relationship is then defined as:

[IDValue = IDValue] AND [LastName = LastName]

A source value may be a field or derived value; target values are always
table fields. Derived values can be the result of an abacus expression or
framework input values.

Page 85

Relationship Types

When a link refers to one, and only one, identical match in a target table, the
relationship is said to be one-to-one.

When a link refers to one or more, identical matches in a target table, the
relationship is said to be one-to-many.

Relationships used as links for DataFlows are one-to-many;

Relationships used by abacus expressions, where the abacus
expression is built in an Access > Table, are one-to-many.

Relationships used by abacus expressions, where the abacus
expression is built in a Framework, are one-to-one. If the relationship
finds more than one matching value, the first value (where, link =
link) will be returned.

Relationship Semantics

Table linking, in addition to types, has two other characteristics:
source/target and inner/outer.

The source table is that which establishes the link and the target, the
respondent. If we were to write our logic on paper, we would begin with the
source, then refer to the target. Therefore, the source is considered to be on
the ‘left’ and the target, on the ‘right’.

When a link is composed of only existing values between two tables, it is
referred to as being within or inside the table. This type of linkage is the
most restrictive as a relationship must exist in both tables for a link to be
considered valid.

When a link may not be present (in either table), it is referred to as being
outside the table. This type of linkage is the most common. For example,
values from the source table will be returned even though there are no
matching values in the target table (left outer join).

Page 86

We therefore have the following relationship semantics:

The left outer join selects rows from the source table, then matches
values in the target table. A source row will be returned regardless of
a matching value in the target table.

The right outer join selects rows from the target table, then matches
values in the source table. A target row will be returned regardless of
a matching value in the source table.

The full outer join combines a left outer join and a right outer join.

The inner join selects rows from the source table only when there is a
matching value in the target table.

The Access Relationship Window

Access > Table relationships relate data between tables within the same
database.

Page 87

Relationships built in the Framework default to the semantic, ‘Left Outer
Join’ method.

The Framework Relationship Window

Unlike relationships built in an Access > Table, Framework relationships
can relate data between Framework values and a database table, tables
within the same database or between tables in different databases.

Page 88

Building Relationships

Relationships are very useful objects. They can be used to retrieve, create or
update information based upon a link. Access Relationships link and/or
locate information and can be used in conjunction with abacus expressions.
When built in the Framework, Relationships can be used to locate data, or
more importantly, update existing data or create new records.

The Access Relationship

To create a new Relationship, ensure the Table window is open and active
(Project > Access > Table). Drag a relationship from the palette. Double
click to open its window.

Page 89

Relationship Settings

Relationship Semantic: Select the method of linkage between the
source and target tables.

Relationship Access/Table: With the relationship window open, click
the ‘Table’ tab from the palette. A list of target tables from the
Access containing the current relationship will be shown. Drag a
table from the list to the table ‘hole’. The Access will be defined
automatically. Once this selection is made, fields from the target table
will be shown.

Show All Fields (Checkbox): Initially checked, shows all target fields.
When unchecked, suppresses target fields not used as part of the link.

Source/Target Objects: After a table is selected, the target column will
list all fields in the target table. With the Relationship window open,
click on the ‘Values’ tag from the palette. Fields/Abaci will be
displayed from the table containing the relationship (source). Drag
any field or abacus to the ‘hole’ in the source column to create a link.

Abacus constructions used for source values, when containing
constants, will automatically use the semantic, ‘inner join’,
regardless of the pop-up setting. A ‘constant’ is considered any
typed or acquired value.

The target table must be in the same Access as the source table.

Comments: In the space at the top of the relationship window, type
any user text. Text will be stored with the relationship object.

Relationships with defined source values ‘lock’ the target table.
If you need to change the table, you must de-select all the
source values. A target table will also be considered ‘locked’
when a DataFlow is using the relationship object.

Page 90

OK, timeout! Relationships are useful, but how? This is indeed the
$64,000 question. Relationships make data retrieval easier and
reporting very sophisticated. Here are a couple of examples:

Let’s assume you are storing inventory records in an inventory table.
Each record has an ID reference to a part number. Now, you want to
display inventory. How do you show the part’s name if only the part
number is in the inventory table? The answer is easy: use a
relationship that links part number in the inventory table to the part
number in the part’s table. Then, use an abacus and get the part name
based on this relationship. When you retrieve (QFIND) data from the
part’s table, select the abacus that gets the part’s name. This is really
very fast and works great.

The second example will make you look good. Using a relationship
semantic, let’s find out how many customers really have orders and
show them to boot. Assume that you have a table of customers and a
table of orders. Create a relationship in the customer’s table linking
their customer number to a matching value in the order’s table. Build
an abacus in the customer table based on the relationship that gets
order dates. Now, retrieve (QFIND) the list of customers along with
the abacus that returns the order dates. If you use the ‘left outer’
semantic, all customers will be shown, regardless of the presence of
orders. Change the semantic to ‘inner’ and watch what happens.
Now only the customers who have orders will be shown.

Using relationships can save you time and produce reports without
building complex queries.

Page 91

Using a Relationship in an Abacus Expression

Access > Table > Abaci (as well as Framework > Abaci) can use a
relationship to locate information. Although Qilan can use the QFIND to
retrieve data from a specific table, it is often easier; although not as efficient,
to use a relationship built in Access > Table or Framework.

The following screen prints demonstrates how to create a join between
two Access > Tables and then retrieve the result. We have two tables,
“Company” and “Contacts”. For each company, there may be one or
more contacts. In the Company table, the primary key is ‘_rowid’. In
the Contact table, the foreign key is ‘company_id’. This is how we
refer to a primary key in another table.

Page 92

Shown above are the two Access > Tables we are ‘joining’. The relationship
will be built in the Company Table because we want to list companies
uniquely and show related information.

Page 93

The relationship designates the Contacts table. After opening the
relationship, the palette will display fields and abacus expressions from the
Company table. We drag the field _rowid (as the source) to link the primary
key to the foreign key. This establishes a state of equality.

The semantic default is ‘left outer join’. This will give us a complete list of
companies, regardless of whether there is a link established.

Page 94

Again, in the Company table, drag an abacus from the palette and double
click to open it. Click on the ‘Operands’ palette tab. The relationship to the
Contacts table will be shown. Highlight the name. The lower portion of the
palette window will display all fields and abacus expressions in the Contacts
Table. Drag the desired value to the abacus window. As shown, the first
and last names are selected. Observe the syntax: [table.name]. This abacus
can now be used as data, as if originating, from the Company table.

Page 95

Finally, we display the company name along with the contact name using the
QTABLE tag. The retrieval is from the Company table:

OpenBase/company/company
OpenBase/company/get_contact_info

We have not discussed the QTABLE tag yet, but it is essentially the same as
a FIND, with integrated HTML table formatting.

The completed expression, including the abacus and relationship is shown
below. The palette window reflects that of the relationship.

Page 96

The Framework Relationship

To create a new Relationship, ensure the Framework window is open and
active (Project > Framework). Drag a relationship from the palette. Double
click to open its window. A window similar to the one shown below will
open.

Relationship Settings

Relationship Access/Table: With the relationship window open, click
the ‘Table’ tab from the palette. A list of target tables from a selected
Access will be shown. Drag a table from the list to the table ‘hole’.
The Access will be defined automatically. Once this selection is
made, fields from the target table will be shown.

Show All Fields (Checkbox): Initially checked, shows all target fields.
When unchecked, suppresses target fields not used as part of the link.

Page 97

Source/Target Objects: Upon the table selection, the target column
will list all fields in the target table. With the Relationship window
open, click on the ‘Values’ tag from the palette. Fields/Abaci will be
displayed from the Framework containing the relationship (source).
Drag any field or abacus to the ‘hole’ in the source column to create a
link(s).

Comments: In the space at the top of the relationship window, type
any user text. Text will be stored with the relationship object.

Unlike relationships in the Access, Framework Relationships can also
specify links used for the creation and updating of existing database records.
When used in this fashion, Relationships identify which record(s) are to
modified; or in the case of creation, which Access > Table.

Refer to the DataFlow and WebTemplate documentation for specifics
and additional information.

The screen prints on the following pages demonstrate how Relationships,
DataFlows and ‘Q’ tags are used to create and update database records.

Page 98

This screen print shows the relationship between the Relationship (top) and
DataFlow (bottom) in the Framework window. Note how the Relationship
establishes the link and the DataFlow, using the defined link, specifies how
the data will be moved to individual fields.

Page 99

The WebTemplate, as shown below, identifies and triggers the DataFlow
and completes the action with either the QUPDATE or QCREATE tag.

A relationship used by a QUPDATE is considered VALID when a
Table is defined and the source field(s) and/or abaci used as links are
defined and non-empty.

A relationship used by a QCREATE is considered VALID when a
Table is defined. Source fields and/or abaci may be defined,
undefined, empty or missing.

Note how in the WebTemplate fragment shown above, QIFBLOCKs
are used to test the input data and then trigger the proper tag
(create/update).

Page 101

DataFlow

DataFlows define the specific data elements (fields or abaci) that are to be
inserted into database fields. DataFlows are always based upon
relationships.

A DataFlow uses a relationship to say, “Move the data in these Framework
icons into these database fields”, where the definition of the database, link
and specific table come from the relationship icon.

DataFlows are triggered exclusively by the ‘Q’ tags, QUPDATE and
QCREATE. QUPDATE will uses a Dataflow to update or create an existing
record(s) (replace field values); QCREATE creates new record(s).

DataFlows created in an Access > Table can be used to move data from one
table to another.

This is a very advanced feature and requires a bit of explanation. The
typical use of a DataFlow is to move framework data into a database
triggered by either the QUPDATE or QCREATE on a WebTemplate.
When you select a DataFlow from a table, you must do so within the
scope of a QFIND. Here’s a simple example:

QFIND fields table.rowid
QUPDATE table.dataflow

The QFIND locates one or more records from ‘table’. For each record
found, the QUPDATE triggers the table.dataflow. Using a DataFlow
in this manner makes is very easy to create or update in one table from
a source table.

Page 102

Building a DataFlow

Open a Framework window then drag out a new Dataflow icon; double click
the icon to open it. Like all other Qilan windows, the upper portion of the
window can accept text comments.

The DataFlow window has three components: relationship, source values
and target values.

The relationship refers to a Relationship icon in the same window as the
DataFlow icon. The Relationship will define an Access > Table and Access
> Table > Fields as the target values. Source values can be fields or abacus
expressions located in the same window as the DataFlow icon.

Page 103

The Relationship and source values are chosen from the palette. The
DataFlow palette shows two tabs: Values and Relationships.

Page 104

DataFlows will be considered invalid without the identification of a
relationship. Click on the palette’s relationship tab. Use the pop-up to select
an access, then a relationship. Drag the relationship’s name, from the list, to
the ‘hole’ labeled, “Relationship”.

Once a relationship is dragged into the ‘hole’, it cannot be removed. If you
need to change a relationship from an existing dataflow, remove the
dataflow from all QUPDATE or QCREATE tags, which are using it. Then
Edit > Clear the DataFlow from the framework window.

To the left of relationship icon, a checkbox is shown, labeled “Show all
fields”. It is on by default. The purpose of this checkbox is to allow you to
view available table fields (targets) specified by the relationship. If you do
not specify a source field or abaci for a corresponding target, the target field
will not be updated.

The next task is to determine which source fields (or abaci) will inserted.
Return to the palette and click the Values tab. Drag the name of the field or
abacus to the dataflow window. Release it over the source line, which
corresponds to the target field. If you make a mistake, choose Edit > Undo
or Edit > Cut or just drag a new field or abaci over the source value.

Page 105

Abacus Expressions

What is an Abacus?

An abacus is a derived value computed from fields and/or other abacus
expressions, environmental or system value, specific computational
procedure or user defined entry. Abacus ‘results’ may be used in queries,
displays or as part of other abacus formulations.

Frameworks and Tables contain abacus expressions. There is no limit on the
number of abacus expressions that can be created, however Qilan does
preset a recursive depth. Refer to the Project Settings for more information.

Abacus expressions using or referencing Access > Table > Fields are
interpreted as values originating within the database. Whereas abacus
expressions using or referencing Framework > Fields are transient values,
specific to WebTemplate process.

The meaning of the preceding statement is subtle, but important.
Consider the following abacus query built in an Access > Table:

([rowid] = (acquire [value])

“Rowid” is a database value. It has permanent properties, such as
type, precision, scale, width, indexed, etc. “Value” on the other hand,
is obtained from the Framework. Its properties are derived from
values assigned to it from other calculations during the cgi execution.
In other words, “value” is transient and changeable.

Page 106

Operators

Qilan contains over 60 abacus operators. Each operator performs a specific
operation. A completed abacus containing one or more operators is referred
to as the abacus ‘expression’. An expression will always return a result.
Results may be undefined, defined and valued or defined and empty and be
of the type: Text, Number, Date, or Flag.

Most operators consist of two parts: the ‘parameter’ and the function. The
parameter is where the designer places a field, abacus, and other expressions
or enters a value. The function describes what mathematical, display or
manipulative action the operator performs. The parameter is represented by
the underscore ‘__’ in the operator list and a purple square when dragged to
the abacus window. Purple squares are interpreted as undefined.

Qilan improves the efficiency of many operators by allowing them to
‘expand’. This feature makes it easier to construct complex
expressions as well as reduce operational redundancy.

Operators (see palette below) that end with an ellipsis (…) are
expandable. After dragging the operator to the abacus window,
highlight the right most purple square, then choose Icon > Expand.

Page 107

An ‘expanded’ operator can be contracted by highlighting the right
most purple square, then choosing Icon > Contract.

Operands

Operands are fields, abacus expressions or constants, representing data,
which are used by operators. Operands may be obtained from the same table
containing the current abacus, WebTemplate objects, another table using a
relationship or user entered text.

Operands may also be placed in an abacus widow without an operator. In
this case, results will that of the operand.

Page 108

Operator Listing

__ + __

Adds two numbers and returns a number. If the value placed
into either side cannot be coerced into a number, the result will
be undefined. {Expandable}

__ - __

Subtracts the right parameter (number) from the left parameter
(number) and returns a number. If the value placed into either
side cannot be coerced into a number, the result will be
undefined.

__ * __

Multiplies two numbers and returns a number. If the value
placed into either side cannot be coerced into a number, the
result will be undefined. {Expandable}

__ / __

Divides the left parameter (number) by the right parameter
(number) and returns a number. If the value placed into either
side is cannot be coerced into a number, the result will be
undefined.

- __

Returns the negative value of a positive number or the positive
value of a negative number. If the initial value cannot be
coerced into a number, the result will be undefined.

Page 109

largest __ __

Compares two values of the same type and returns the largest
value of that type. If the values are not of the same type, they
will be converted to the same type, then evaluated. The output
will then be formatted to that of the larger type. If either
parameter is undefined, the result will be undefined.
{Expandable}

smallest __ __

Compares two values of the same type and returns the smallest
value of that type. If the values are not of the same type, they
will be converted to the same type, then evaluated. The output
will then be formatted to that of the smaller type. If either
parameter is undefined, the result will be undefined.
{Expandable}

newline

Accepts no values. Returns a Carriage Return/Line Feed.

tab

Accepts no values. Returns a tab character.

capitalize __

Accepts text input. Converts the first alpha character of each
word to upper case.

substring starting at __ length __ from __

Extracts a text string using the relative position of text
characters. Accepts two numbers and a text input. This
operator returns a text string. The output will be undefined if
any input is undefined or empty. Substrings that are partially
outside of the source string return only the valid part.

Page 110

__ followed by __

Concatenates any two values. If either value is undefined, the
result will be undefined. Non-text inputs will be converted to
text. The result will be text. {Expandable}

__ followed or __

Concatenates any two values. If either value is undefined, the
other value will be passed. Non-text inputs will be converted to
text. The result will be text. {Expandable}

length __

Accepts any text value and returns the number of characters in
the string. Non-text inputs will be converted to text.

locate __ starting at __ in __

Returns the numerical starting position of a text string within a
text string. Accepts a text input, number and text input.

unicode __

Unicode accepts a string and returns an integer. The first
character of the string is the only one of significance. Dates or
numbers are first converted to a string, and then first character
of the conversion is used. The integer returned is the unicode
equivalent of the first character.

Page 111

character __

Character accepts a number and returns a string. The character
is the Unicode equivalent of the number. Dates or strings are
first converted to a number (if possible), before being converted
to a string. If the number starts with "%", "U+", "0x" or "0X",
it is interpreted as a hexidecimal number. Otherwise it is
interpreted as a decimal number. Example, ‘13’ returns a
carriage return, ‘10’ returns a line feed.

uppercase __

Converts text input to upper case.

URL encode __

Converts ASCII characters (decimal 0 through 126) and outputs
their hexadecimal equivalent. Note, A - Z, a - z and 0 - 9 are
not encoded. Example: ‘space’ becomes ‘%20’.

This operator comes to the rescue in situations when you want
to submit data via the GET method. Use it in abacus
constructions to encode field names or data.

lowercase __

Converts text input to lower case.

__ and __

Returns ‘0’ if any input is NO, ‘1’ if all inputs are YES,
UNDEFINED if any input is undefined and there is no NO
input. {Expandable}

Page 112

if __ then __ else __

‘If’ accepts a flag parameter, then any two parameters. This
operator outputs the ‘Then’ parameter if the result of ‘If’ flag is
“YES” and outputs the ‘Else’ input if the result of the ‘If’ input
is “NO”. If the ‘If’ input is undefined, all outputs will be
undefined. The parameters for ‘Then’ and ‘Else’ do not have to
be of the same data type.

__ or __

Returns ‘1’ if any input is YES, NO if all inputs are NO,
UNDEFINED if any input is undefined and there is no YES
input. {Expandable}

__ contains __

Compares the contents a text string with a value. Accepts two
text inputs and returns a flag. Returns ‘1’ if the second
parameter occurs anywhere within the first parameter. If either
operand is undefined, the result is undefined.

__ ends with __

Compares the end of a text string with a value. Accepts two
text inputs and returns a flag. Returns ‘1’ if the second
parameter occurs at the end of the first parameter. If either
operand is undefined, the result is undefined.

__ starts with __

Compares the start of a text string with a value. Accepts two
text inputs and returns a flag. Returns ‘1’ if the second
parameter occurs at the beginning of the first parameter. If
either operand is undefined, the result is undefined.

Page 113

__ like __

Compares a value with a pattern match. Accepts two inputs
and returns a flag. Returns ‘1’ if the pattern specified by the
second parameter matches the first parameter. If either the first
or second parameter is undefined, the result is undefined.

Using ‘like’ without the use of wildcards is basically the same
as ‘equals to’. Wildcards extend search functionality by
enabling patterns to be specified, not merely text strings. There
are two basic types of wildcards: ‘accept any’ and ‘accept one’.

SQL-92 Standard Variation

Accept Any % *
Accept One _ ?

When __ like __ is used in an Access > Table, wildcards are
defined by the database. Although most use the SQL-92
Standard or the accepted variation, databases are free to define
their own syntax, including additional wildcards. Refer to your
database documentation for the appropriate wildcard character.

When __ like __ is used in the Framework, wildcards are
defined by the SQL-92 Standard.

Examples:

Search for all occurrences where the second character is
‘e’.

[table.field] like “_e%” escape __

The underscore will accept any single character as the
first letter and the percent sign will accept any number of
characters to follow the letter ‘e’.

Page 114

Validate an input to insure it is in the format of a social
security number (###-##-###).

[field] like “___-__-___”

This will return true (1) when the format is in the form of
a social security number, containing two dashes (-).

__ like __ escape __

Compares a value with a pattern match. Accepts three text
inputs and returns a flag. Returns ‘1’ if the pattern specified by
the second parameter matches the first parameter. If either the
first or second parameter is undefined, the result is undefined.

The third parameter defines a character preceding a wildcard
character. It accepts a text input. When encountered, the
wildcard character will be interpreted as part of the text string.

Example:

Search for all occurrences of the letter ‘a’ followed by an
underscore followed by, somewhere else in the word, the
letter, ‘b’.

[table.field] like “%a_%b%” escape “\”

The escape parameter identifies the backlash (\) as the
escape character. In the pattern, the escape character
preceded the underscore (_). This causes the database to
interpret the underscore literally

Page 115

__ = __

Compares any value with a value for equality. Accepts two
inputs and returns a flag.

__ not equal __

Compares any value with a value for inequality. Accepts two
inputs and returns a flag.

__ > __

Compares two values for inequality, where the left value is
greater than the right value. Accepts two inputs of the same
type and returns a flag.

__ >= __

Compares two values for equality or where the left value is
greater than the right value. Accepts two inputs of the same
type and returns a flag.

__ < __

Compares two values for inequality, where the left value is less
than the right value. Accepts two inputs of the same type and
returns a flag.

__ <= __

Compares two values for equality or where the left value is less
than the right value. Accepts two inputs of the same type and
returns a flag.

defined __

Accepts any value and returns a flag. The flag value will be ‘1’
if the input is valued or empty; ‘0’ if the input value is
undefined.

Page 116

__ defined or __

Accepts any two values and returns the first defined, non-empty
value, evaluating left to right. {Expandable}

empty becomes undefined __

Accepts any value and returns undefined when the input is
defined, but contains no value. All other inputs are passed
without modification.

undefined __

Accepts any value and returns a flag. The flag value will be ‘1’
if the input is undefined; ‘0’ if the input value is defined or
empty.

empty __

Accepts any defined value and returns a flag. The flag value
will be ‘1’ if the input is defined, but contains no value. This is
the nominal state of a blank HTML text input. The flag value
will be ‘0’ if the input is defined and contains a value. An
undefined input will return an undefined result. Note, a “value”
is any input whose length is greater than 0.

not __

Accepts a flag value and returns the opposite flag value. ‘1’
becomes ‘0’. If the flag is not defined, the result is undefined.

text __

Accepts any data type input and returns the same input as text.

integer __

Accepts any data type input and returns the same input as an
integer. If the input data type cannot be interpreted as a
number, the result will be undefined.

Page 117

float __

Accepts any data type input and returns the same input as a
floating point number. If the input data type cannot be
interpreted as a number, the result will be undefined.

date __

Accepts any data type and returns a date [OS format]. If the
input data type cannot be interpreted as a number, the result will
be undefined.

flag __

Accepts any data type input and returns the same input as a
flag. If the input data type cannot be interpreted as a flag, the
result will be undefined.

__ formatted by __

Accepts a number or date data type in the first parameter, and a
text input in the second parameter. It formats the date or
number according to the instructions (format) in the second
parameter, and returns the formatted result (text).

HTML input values are always interpreted as text. Convert
these values to numbers or valid Unix dates before placing them
into the first parameter. For more information concerning the
format syntax for the second parameter, please refer to Formats
at the end of this section.

Formatted by can be used to convert Unix dates to more
traditional formats accepted by other applications. [Unix_date]
formatted by “%m/%d/%y” will convert 2000-11-30 00:00:00
–0500 to 11/30/00.

Page 118

round __

Accepts a number data type and rounds fractions to the nearest
integer. The result is a number.

round __ to nearest __

Accepts a number data type in the first parameter. The first
number will be rounded to the value in the second parameter.
The result is a number.

now

Accepts no values. Returns a date (date, time [OS format] and
the difference in the current timezone from GMT [±]). The
system localization format will be used. The US default is:
yyyy-mm-dd hh:mm:ss ±0000.

The operating system keeps track of time right down to the
millionth of a second (and beyond). Converting Now into a
number (Float), will return the number of seconds prior to
1/1/2001 with a large scale. From experience, we have found
that this number is good way (although not perfect) to create
unique entry values.

day of the week __

Accepts a date input and returns a number corresponding to the
day of the week, zero through 6. (Sunday = 0)

year __

Accepts a date input and returns a four digit number
corresponding to the year.

month __

Accepts a date input and returns a number corresponding to the
month. (January=1)

Page 119

day of the month __

Accepts a date input and returns a number corresponding to the
day of the month.

hour __

Accepts a date input and returns a number corresponding to the
hour.

minute __

Accepts a date input and returns a number corresponding to the
minute.

second __

Accepts a date input and returns a number corresponding to the
second.

timezone __

Accepts a date input and returns a number corresponding to the
difference between GMT and the current timezone [±], in
seconds.

Page 120

month __ day __ year __

Accepts three numeric inputs then returns a date. The input
values should be within the legal ranges for months (1-12), days
(1-31) and years. The system will attempt to ‘role over’ values
outside of legal ranges. Time will be output as 00:00:00;
TimeZone as the number of hours ± GMT.

hour __ minute __ second __

Accepts three numeric inputs then returns a time. The input
values should be within the legal ranges for hours (0-23),
minutes (0-59) and seconds (0-59). The system will attempt to
‘role over’ values outside of legal ranges. Date will be output
as 01-01-1970; TimeZone as the number of hours ± GMT.

date __ time __ timezone __

Accepts a date, time and number, then returns a localized date.
The Timezone refers to the number of seconds ± GMT. For
example, a New York City time would enter –18000 (five
hours).

environment __

Accepts a CGI environmental keyword and returns the result.
Keywords, definitions and examples are provided at the end of
this section. Keywords may be entered by direct typing.

Page 121

capture __

Obtains values from HTML inputs or table fields, by name.

For HTML inputs, the ‘name’ refers to the HTML input ‘name’
attribute. Accepts string value types and returns the HTML
input ‘value’ attribute. The name parameter and the HTML
input name must be matched exactly. Names are case sensitive.

Capture is used to obtain the value of HTML inputs when the
input name attribute is dynamically assigned. For example,
consider a QTABLE where each row contains one HTML
input. The name attribute is the table’s rowid.

QTABLE fields table.rowid
TR

TD
QASSIGN icon framework.rowid

value table.rowid
INPUT type text

name framework.rowid

When this table is displayed, there will be an input on each row.
As each row is retrieved, we assign table.rowid to
framework.rowid.

Next, we use framework.rowid as the name attribute for the
HTML input tag.

The name of the input will correspond to the rowid of the
record being retrieved.

The value of the input is then obtained as follows:

Capture [framework.rowid]

This abacus can then be used in other calculations, relationships
or dataflows.

Page 122

Observe that a list of inputs can be submitted with a single
HTML input. Refer to ‘Capturing Values’ for examples.

For table field names, the 'path' to the table field must be typed
as follows: /[access]/[table]/field. For example, where the
Access name is, "MIS", the table name, "Accounts", and the
field name, "amount", the correct path is:

/MIS/Accounts/amount

• The leading and separating forward slashes are required.
• Table and field names are the Qilan names, not the external

names.
• Names are case sensitive

Accessing a table field in this manner is intended to offer the
designer a method to dynamically select field(s). The
traditional manner is to use a QVALUE by placing the field
icon in the icon attribute, however any variables passed to the
Capture operator will be interpreted as the field name.

Page 123

acquire __

Obtains values from an enclosing "scope". A scope could be a
QFIND (or equivalent), or the Framework. Accepts any value
type and returns the same value type.

Acquire becomes useful when requiring a framework value in
table > abacus constructions. For example, a table > abacus
query routinely evaluates table data against framework values.
Acquire obtains this value.

This abacus is constructed in the Access > table. ‘Rowid is a
field in the table which is compared to ‘sched_rowid’ in the
Framework, ‘Status’.

Another use for ‘acquire __’ is to obtain a framework values to
complete data strings in the Access > Table. Suppose you want
to create an ‘href’ abacus in a table which will be retrieved via a
QFIND. This abacus needs a value from the Framework.
Construct this as follows:

Page 124

acquire __ from __

Obtains values from an enclosing "scope". A scope could be a
QFIND (or equivalent), or the Framework. The second
parameter is used to identify a QGROUP or QFIND tag by its
<NAME> attribute.

‘From’ refers to the literal name of a WebTemplate object
(QGROUP or any of the QFIND derivitives). It is case
sensitive.

Abacus expressions containing or referencing the expression,
Acquire __ From __, must be demoted (or within) the named
object.

In the following example, the first QFIND queryicon is
acquiring a value returned by a QGROUP. The QFIND is
demoted within the QGROUP. Likewise, the second QFIND is
also acquiring a value from the QGROUP.

QGROUP Name [Summary]
Ave [AvePrice]

QFIND Name [Find]
QueryIcon [Price ≥ AvePrice]
Fields[CompanyName]

QFIND QueryIcon [BestCustomer]
Fields [CustomerName]

When all data returns are performed from the same database
table, Qilan does not know which object to refer to. For
instance, if the query for the innermost QFIND acquires a value
from the QGROUP, the identification of the intended ‘object’
will be ambiguous, as the other QFIND is also an eligible
object. When this situation arises, you may name the target
object. This is the purpose of Acquire __ From __.

Page 125

assign __ from __

Specifies a field, then a value. This operator is used to assign a
value to a field. It is useful for setting control values for
looping and recursive functions. The operator returns the value
of the second parameter.

‘From’ refers to a value assigned to a field. It may be a literal
value, such as, ‘1’, or a reference to a field or another abacus.

Framework field values are established when the WebTemplate
is processed. The values will be retained throughout the
processing unless they are reused or explicitly changed using
the Assign __ From __ expression or QASSIGN tag.

Page 126

The form, ‘Schedule_Service’, uses a single date to set its entry.
What we want to do is create a clickable link, that when
clicked, changes the user’s entry to the current day. Here is
how this is done:

The value of ‘day’ is derived from ‘sched_date_assigned’ (a
date). The value of ‘sched_date_assigned’ (also a field) is
created by a href link as follows:

Note how the value of ‘sched_date_assigned’ is set to the value
of Now. We use URL encode __ because the Unix date has
spaces in its string and therefore needs to be encoded.

The format of this construction, when used in conjunction with
HTML A href values, will submit the form and return the same
page (“Schedule_Service”). The value of ‘day’ will now be the
current day.

The additional operators included with the ‘assign __ from __’
are used to set the value of ‘day’ when the page is initially
retrieved. At this point, ‘sched_date_assigned’ will be
undefined.

Page 127

__ encrypt with __

Encrypt implements Twofish (128-bit block cipher) with a
variable-length key up to 256 characters to securely encrypt
string data. The first and second parameters accept strings as
their input. The second parameter is interpreted as the ‘key’,
and should be at least 8 characters in length. The time
necessary to encrypt is dependent upon the key length.

Input ‘strings’ may consist of any combination of non-numeric
or alphanumeric characters. Numbers alone (with or without
decimal points) are not considered strings. Numbers should be
converted to strings by using the ‘__ formatted by __’ abacus
operator. For example:

((“34.56” formatted by “##.##”) encrypt with “aAc454vMcd”)

Keys should consist of alphanumeric characters; the use of
numbers alone should be avoided.

__ decrypt with __

Decrypt implements Twofish (128-bit block cipher) with a
variable-length key up to 256 characters to decrypt string data
encrypted with the abacus operator ‘__ encrypt with __’. The
first and second parameters accept strings as their input. The
second parameter is interpreted as the ‘key’, and must exactly
match the key used with the encryption abacus. The time
necessary to decrypt is dependent upon the key length.

Encryption/Decryption operators give you the ability to store
data remotely without fear. Your data is transmitted and stored
in a database totally encrypted. Some uses come immediately
to mind… credit card information, storing information in
databases over insecure lines, passing information between two
versions of Qilan in different locations, etc. Now I’m happy!

Page 128

function __ parameter __

This operator implements most of the mathematical functions
as described by the C math library (libm). {Expandable}

To use this abacus operator, double click on the function ‘hole’,
and then type the name of the desired function. Available
functions are listed below (names are case insensitive).
Entering an unlisted function name will return an error.

Other abacus operators or abacus constructions may be dragged
in to the function ‘hole’ so long as they output a listed function
as a text string.

The parameter ‘hole’ contains a single numeric value. This is
the value upon which the function will act. Entering a non-
numeric value will return an error.

When a function requires the entry of more than one parameter
value, click once on the rightmost undefined parameter hole to
highlight it. Choose, “Expand Selection”, from the Icon menu.
The operator will expand so that a second, undefined, parameter
value appears. The parameter value ordering is, ‘x, y’.

Other abacus operators or abacus constructions may be dragged
in to the parameter ‘hole’ so long as they output numeric values
or values which can be coerced into numbers.

Page 129

Function Operators

acos computes the principal value of the arc
cosine of x in the range [0, pi].

acosh computes the inverse hyperbolic cosine
of the value x.

asin computes the principal value of the arc
sine of x in the range [-pi/2, +pi/2].

asinh computes the inverse hyperbolic sine of
the value.

atan computes the principal value of the arc
tangent of x in the range [-pi/2, +pi/2].

atanh computes the inverse hyperbolic tangent
of the value x.

atan2 computes the principal value of the arc
tangent of y/x, using the signs of both values
to determine the quadrant of the return
value.

cbrt computes the cube root of x.

ceil returns the smallest integral value greater
than or equal to x.

copysign returns x with its sign changed to y's.

cos computes the cosine of x (measured in
radians).

cosh computes the hyperbolic cosine of x.

erf calculates the error function of x; where
x = 2/sqrt(pi)*integral from 0 to x of exp
(-t*t) dt.

Page 130

erfc calculates the complementary error function
of x; that is, erfc subtracts the result of the
erf from1.0.

exp computes the exponential value of x.

expm1 computes the value of exp(x)-1.

fabs computes the absolute value of a floating-
point number x.

floor returns the largest integral value less than or
equal to x.

hypot computes the sqrt(x*x+y*y)

ilogb returns x's exponent n, in integer format.

j0 computes the Bessel function of the first
kind of the order 0, for the real value x.

j1 computes the Bessel function of the first
kind of the order 1, for the real value x.

lgamma returns log || (x) |.

log computes the value of the natural logarithm
of the value x.

log10 computes the value of the logarithm for the
value x to base 10.

log1p computes the value of log(1+x) accurately
even for a tiny value x.

pow computes the value of x to the exponent y.

remainder returns the remainder r := x - n*y where n is
the integer nearest the exact value of x/y;
moreover if |n - x/y| = 1/2 then n is even.

Page 131

rint returns the integral value (represented as a
double precision number) to the nearest x.

sin computes the sine of x (measured in
radians).

sinh computes the hyperbolic sine of x.

sqrt computes the non-negative square root of x.

tan computes the tangent of x (measured in
radians).

tanh computes the hyperbolic tangent of x.

y0 computes the linearly independent Bessel
function of the second kind of the order 0
for the positive integer value x.

y1 computes the linearly independent Bessel
function of the second kind of the order 1
for the positive integer value x.

So, what do these functions actually do? Well, if you’re a math major,
the answer can seem obvious from the description, but for the rest of
us… If you want to know more, try using the Terminal application
and typing, “man [function_name]”. I suggest you first take a look at
“man math” for a quick overview of the math functions. A bit
‘geeky’, but informative nevertheless.

Page 132

Abacus Limits

When one abacus is used or referenced by another abacus, Qilan treats each
abacus as if it were on a different level or depth. By default, a user
configurable maximum depth has been set to 100. See Recursive Limits for
more details.

Page 133

Conversion

Calculations in Qilan are lenient with regards to proper format. If an
operand is of the wrong type for an operator, an attempt is made to convert it
to the right type. If the conversion cannot be done, an ‘undefined’ value is
returned. The conversion rules are very lenient. For example, an empty
string with no digits in it converts to the number 0.

Conversion Rules

Numeric calculations are all done with double precision floating point
numbers. Integers are converted to their corresponding floating point.

If the required type is a Flag, the Text “YES", “Y”, “TRUE” or “T”
are interpreted as YES; "NO", “N”, “FALSE” or “F” are interpreted as
NO, all other text strings are undefined; the number ‘0’ is NO, all
other numbers are ‘YES’.

If the required type is a Number, the Flag NO is interpreted as 0, the
Flag YES is interpreted as 1. Text, as numerical representations, will
not be treated as numbers unless explicitly converted using the Float
or Integer operator. HTML input value are always interpreted as text.

If the required type is Text, the value is converted to Text, just as if it
was being put into the HTML document.

If the required type is a date and the input value is text, only values
that conform to the system format will be interpreted as a date, all
other values will be undefined. Numbers and text representations of
numbers will be interpreted as dates.

Some databases, notably FrontBase, require explicit data typing. If
you receive errors that refer to incorrect data formats or other data
incompatibilities convert your data. The following abacus operators
are used to explicitly type data:

Integer __ Float __
Date __ Flag __ (aka boolean)
Text __

Page 134

Manipulating Dates and Times

Qilan uses the localized system specification for dates and times. For Mac
OS X, the numerical equivalent for the current date and time is the number
of seconds ± 1/1/2001. For example, if the Now operator is converted to a
number, it would output a very large negative value, if the current date is
prior to 1/1/2001.

Dates and times are recorded in seconds. Therefore a day equals sixty
seconds times 60 minutes times 24 hours or the numerical value of 86400.
Fractions of seconds can also be expressed in milli, mirco, pico or nano
seconds.

Mac OS X assumes all dates include time and locale. This is also the
specification for most SQL databases. A date input, therefore, must contain
all the necessary components. Attempting to extract the month number from
the string, “3/24/00”, will result in an undefined value. However, if the
string, “2000-03-24 00:00:00 –0050” is used, the value will be “3”. For
HTML date submittals, you have three options:

Create separate fields for month, day and year, and then pass these values
to the Month__Day__Year operator. Qilan will then create a legal date.

Use the ‘locate’ and ‘substring’ extraction operators to parse the date into
the month, day and year. Then pass these values to the
Month__Day__Year operator. Qilan will then create a legal date or type
the date as text in any one of the following formats:

[yyyy-mm-dd] omitting time
[yyyy-mm-dd] [hh:mm:ss] omitting timezone
[yyyy-mm-dd] [hh:mm:ss] [[+|-]tt[:]zz] fully formatted

Use the abacus operator, “Date __” to convert a text entry to a date
data type. Otherwise, Qilan will interpret it as text.

When the Month__Day__Year operator is used, without a time specification,
the time will be set to zero. The GMT difference will still be expressed. If
the Hour__Minute__Second__ operator is used without a date specification,
the date will be output as 1970-01-01.

Page 135

To avoid all the potential difficulty dealing with dates, times,
timezones and formatting specifics, consider storing dates as integers.
Although this may not be suitable for all applications, it works well
when the day is the storage value.

Using the ‘formatted by’ abacus operator, format a date (with or
without time specification) as YYYYMMDD (%Y%m%d). This will
return a fixed length (8) numerical value which increments for each
passing day. Calculations performed on this value will refer to a day,
rather than a daily time span.

One caution however, storing a day as an integer implies that queries
must be based on the comparisons of integer values, not integers to
text values. Consider these queries:

Framework:
([date] formatted by [%Y%m%d]) > [20030101]
(integer ([date] formatted by [%Y%m%d])) > (integer [20030101])

Table:
[day] > [20030101]
[day] > (integer [20030101])

These pairs are NOT the same and will yield different results. Each
pair compares an integer to a text value, and an integer to an integer
value.

Page 136

Defined, Empty and Undefined Values

Qilan treats values as DEFINED, DEFINED and EMPTY or UNDEFINED.
A defined value contains data or is designated as empty. An undefined
value is neither empty nor defined.

Operators that accept numbers or dates will convert empty values to ‘0’.
Operators that accept text strings will pass empty values as having no value.

An input value is considered empty when user input is ‘declared’ but
not entered. When an operator is dragged into the abacus window,
purple squares replace operator parameters. The purple square is
considered an undefined value. When a user double clicks the purple
square (declares a value), a double quote will appear (““). Qilan now
interprets this as ‘empty’. To enter a value, the user merely has to
type. To remove the (“”), highlight the quotes and choose, Edit >
Clear. The purple square will be restored and the value will be
undefined.

When an empty value is encountered in a text string, it will be passed
as a ‘defined, yet empty value’. For example, ABC“”DEF, where the
double quotes represent an empty value, the result will be ABCDEF.

You can test for an empty value using the Empty __ operator.

Undefined database values will produce an undefined for calculations. Most
operators produce an undefined result if any of its operands are undefined.

If you are used to the database concepts of defined and undefined
(null), and do not wish to use ‘empty’, enable the project preference
setting, “Treat Empty as Undefined”. Setting this preference will
automatically convert empty values to undefined.

Page 137

Operator Input/Output Summary

Operator Inputs Output

And N Flag Flag
Capitalize 1 Text Text
Capture 1 Text Text
Contains 2 Text Flag
Defined 1 Any Flag
Divide 2 Number Number
EndsWith 2 Text Flag
EqualTo 2 Any Flag
Substring 3 NNT Text
Flag 1 Any Flag
FollowedBy N Text Text
FollowedOr N Text Text
Function T Number Number
IfThenElse 3 FAA Any
GreaterOrEqualTo 2 Same Flag
GreaterThan 2 Same Flag
Largest N Any Any
Length 1 Text Number
LessOrEqualTo 2 Same Flag
LessThan 2 Same Flag
Like 2 Text Flag
Locate 3 TNT Number
LowerCase 1 Text Text
Minus 2 Number Number
Negate 1 Number Number
Not 1 Flag Flag
NotEqualTo 2 Any Flag
Number 1 Any Number
Or N Flag Flag
Plus N Number Number
Round 1 Number Number
RoundTo 2 Number Number
StartsWith 2 Text Text

Page 138

Smallest N Number Number
Text 1 Any Text
Times N Number Number
Undefined 1 Any Flag
UndefinedBecomes N Any Any
UpperCase 1 Text Text
URLEncode 1 Any Text
NewLine 0 Text

 Tab 0 Text
DefinedOr N Any Any
FormattedBy 2 (ND) and T Text
Now 0 Date

 Today 0 Date
DayOfWeek 1 Date Number

 Year 1 Date Number
 Month 1 Date Number
 DayOfMonth 1 Date Number
 Hour 1 Date Number
 Minute 1 Date Number
 Second 1 Date Number
 TimeZone 1 Date Number

MonthDayYear 3 Number Date
HourMinuteSecond 3 Number Date
DateTimeZone 2 Date; Number Date
Capture 1 Any Any
Acquire 1 Any Any
AcquireFrom 2 Any Text Any
AssignFrom 2 Field Any Any

Page 139

Codes for Input/Output Summary:

The first character gives the number of inputs the operator recognizes.
Associative commutative operators allow N, meaning that any number of
inputs may be present. “Any” means that all types are acceptable.

NNT expects two Numbers and a Text.
D is a date.
FAA expects a Flag and two more of Any (not necessarily matching) type.
TNT expects a Text, a Number, and a Text.

‘Same’ expects two inputs of the same type. If they are not of the same
type, one of them will be converted to match the other.

If any input does not match the type expected by an operator, it is converted.

Page 140

Formats

Introduction

Numerical and date data may be displayed in a variety of user defined
formats. Qilan uses a special abacus operator for this purpose. The
operator, __ formatted by __, will format the data when a number or date is
placed into the first (leftmost) parameter and an acceptable syntax is typed
into the second (rightmost) parameter.

If string data (text) is placed into the first parameter, it will be coerced into a
number or date if it can be interpreted. For example, the text string ‘1234’
will be treated as a number. Strings that cannot be coerced, such as ‘A1B1’
will be passed through unchanged regardless of the format syntax.

Formatting Options: Numbers

Format strings, entered into the second parameter, can include numeric
characters. Wherever you include a number in a format string, the number is
displayed unless an input character in the same relative position overwrites
it. For example, suppose you have the positive format string "9,990.00", and
the value 53.88. The operator would display the value as 9,953.88.

Separators

Format strings can include the period character (.) as a decimal separator,
and comma character (,) as a thousand separator.

If you want to use different characters as separators, you can set them in
Project Settings or enter your own using the __ formatted by __ abacus
operator.

Placeholders

You use the pound sign character (#) to represent numeric characters. For
example, suppose you have the positive format "$#,##0.00". If the
characters 76329 were entered, they would be displayed as $76,329.00.
Strictly speaking, however, you don't need to use placeholders. The format
strings ",0.00" , "#,#0.00", and "#,##0.00" are functionally equivalent.

Page 141

In other words, including separator characters in a format string tells the
operator to use the separators, regardless of whether you use (or where you
put) placeholders. The placeholder character's chief virtue lies in its ability
to make format strings more human-readable.

Spaces

To include a space in a format string, use the underscore character (_). This
character inserts a space if no numeric character has been input to occupy
that position.

Currency

The dollar sign character ($) is normally treated just like any other character
that doesn't play a special role. However, when you enable localization, the
dollar sign character is converted to the currency symbol appropriate for the
environment in which the application is running.

All other characters specified in a format string are displayed as typed.

Page 142

Specification of Multiple Formats

The syntax is a 'literal' expression of the desired format. If more than one
numerical formats is desired a designer can use a semicolon to specify
different formats. For example, a format can be specified for a positive, zero
and negative value.

Positive Format:

$###,##0.00

Positive Format;Negative Format:

###,##0.00;(###,##0.00).

Positive Format;Zero Format;Negative Format:

$###,###.00;0.00;($###,##0.00). Note that zero formats are treated as
string constants.

As implied in the above list, you're only required to specify a format for
positive values. If you don't specify a format for negative and zero values, a
default format based on the positive value format is used. For example, if
your positive value format is #,##0.00, an input value of "0" will be
displayed as 0.00. If you don't specify a format for negative values, the
format specified for positive values is used, preceded by a minus sign (-). If
you specify a separate format for negative values, its separators should be
parallel to those specified in the positive format string. Separators are either
enabled or disabled for all formats-both your negative and positive formats
should therefore use the same approach.

Page 143

Formatting Options: Dates

Date formats can include any characters (except %'s), which are copied as
typed. They can also include %'s, which are interpreted as follows:

Specifier Description

%% a '%' character

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c shorthand for " %X %x ", the locale format
for date and time

%d day of the month as a decimal number (01-31)

%e same as %d but does not print the leading 0
for days 1 through 9

%F milliseconds as a decimal number (000-999)

%H hour based on a 24-hour clock as a decimal
number (00-23)

%I hour based on a 12-hour clock as a decimal
number (01-12)

%j day of the year as a decimal number (001-
366)

%m month as a decimal number (01-12)

%M minute as a decimal number (00-59)

Page 144

%p AM/PM designation for the locale

%S second as a decimal number (00-59)

%w weekday as a decimal number (0-6), where
Sunday is 0

%x date using the date representation for the
locale

%X time using the time representation for the
locale

%y year without century (00-99)

%Y year with century (such as 1990)

%Z time zone abbreviation (such as PDT)

%z time zone offset in hours and minutes from
GMT (HHMM)

Date/Time Examples:

11/20/99 %m/%d/%y
11/20/1999 %m/%d/%Y
Nov 20, 1999 %b %d, %Y
November 20, 1999 %B %d, %Y
Sunday, November 20, 1999 %A, %B %d, %Y
1 PM, Sunday, November 20, 1999 %I %p, %A, %B %d, %Y
(today), as an integer %Y%m%d

If you add a number to a date, say 86400 seconds (one day), the result will
be a number, not a date. So, don’t forget to use the date __ abacus operator
to format the output as a date. For example,

((date (now + “86400”)) formatted by “%m/%d/%y”)

will output tomorrow’s date in a mm/dd/yy format.

Page 145

CGI Environmental Keywords

In order to pass data about the information request from the server to the cgi
script, the web server uses environment variables. Environmental variables
are set when the web server executes qilan.cgi.

Entering the appropriate keyword into the abacus operator, environment __,
will extract the variable information as described below. If the variable
information is unknown or unavailable, the result of the abacus operator will
be undefined.

Keywords are case sensitive.

The following environment variables are request-specific:

QUERY_STRING

The information which follows the ‘?’ in the URL which referenced
the qilan document. It is interpreted by qilan.cgi to preset framework
variables. It should not be used for other purposes.

PATH_INFO

The extra path information, as given by the client. This is what
follows cgi-bin/qilan.cgi/ in the URL that invokes the qilan document.

Page 146

SESSION_ID

The session_id, as given by the client. This is what follows cgi-
bin/qilan.cgi// in the URL that invokes the qilan document.

SESSION_ID is a Qilan specific environmental variable. It is
created when one or more framework fields are specified as a
‘session variable’ and appears as an encrypted string in the
URL.

The following environment variables are not request-specific and are set for
all requests:

SERVER_SOFTWARE

The name and version of the information web server software
answering the request (and running qilan.cgi). Format: name/version

SERVER_NAME

The server's hostname, DNS alias, or IP address, as it would appear in
self-referencing URLs.

GATEWAY_INTERFACE

The version of qilan.cgi executed by the web server. Format:
CGI/version.

The following environment variables are specific to the request being
fulfilled by the web server:

SERVER_PROTOCOL

The name and version of the information protocol this request came in
with. Format: protocol/version.

SERVER_PORT

The port number to which the request was sent.

Page 147

REQUEST_METHOD

The method with which the request was made. For HTTP, this is
"GET", "HEAD", "POST", etc.

PATH_INFO

The extra path information, as given by the client. In other words,
scripts can be accessed by their virtual pathname, followed by extra
information at the end of this path. The extra information is sent as
PATH_INFO. This information should be decoded by the web server
if it comes from a URL before it is passed to the CGI script.

PATH_TRANSLATED

The web server provides a translated version of PATH_INFO, which
takes the path and does any virtual-to-physical mapping to it.

SCRIPT_NAME

A virtual path to the script being executed used for self-referencing
URLs.

REMOTE_HOST

The hostname making the request. If the web server does not have
this information, it should set REMOTE_ADDR and leave this unset.

REMOTE_ADDR

The IP address of the remote host making the request.

AUTH_TYPE

If the server supports user authentication, and the script is protects,
this is the protocol-specific authentication method used to validate the
user.

Page 148

REMOTE_USER

If the server supports user authentication, and the script is protected,
this is the username they have authenticated as.

REMOTE_IDENT

If the HTTP server supports RFC 931 identification, then this variable
will be set to the remote user name retrieved from the server. Usage of
this variable should be limited to logging only.

CONTENT_TYPE

For queries that have attached information, such as HTTP POST and
PUT, this is the content type of the data.

CONTENT_LENGTH

The length of the said content as given by the client.

In addition to these, the header lines received from the client, if any,
are placed into the environment with the prefix HTTP_ followed by
the header name. Any ‘-‘ characters in the header name are changed
to ‘_’ characters. The server may exclude any headers that it has
already processed, such as Authorization, Content-type, and Content-
length. If necessary, the server may choose to exclude any or all of
these headers if including them would exceed any system
environment limits.

HTTP_ACCEPT

The MIME types which the client will accept, as given by HTTP
headers. Other protocols may need to get this information from
elsewhere. Each item in this list should be separated by commas as
per the HTTP spec. Format: type/subtype, type/subtype.

HTTP_USER_AGENT

The browser the client is using to send the request. General format:
software/version library/version.

Page 149

CGI Process Environment

Variable Value

SCRIPT_URL /cgi-bin/printenv
SCRIPT_URI http://www.qilan.com:16080/cgi-bin/printenv
HTTP_UA_CPU PPC
HTTP_UA_OS MacOS
SCRIPT_FILENAME /Library/WebServer/CGI-Executables/printenv
SERVER_NAME www.qilan.com
HTTP_ACCEPT */*
REMOTE_PORT 52914
HTTP_USER_AGENT Mozilla/4.0 (compatible; MSIE 5.23; Mac_PowerPC)
HTTP_HOST www.qilan.com
SERVER_PORT 16080
SCRIPT_NAME /cgi-bin/printenv
PATH /bin:/sbin:/usr/bin:/usr/sbin:/usr/libexec
HTTP_EXTENSION Security/Remote-Passphrase
nokeepalive 1
REMOTE_ADDR 127.0.0.1
REQUEST_METHOD GET
GATEWAY_INTERFACE CGI/1.1
HTTP_CONNECTION Keep-Alive
HTTP_PC_REMOTE_ADDR 24.62.225.146
SERVER_PROTOCOL HTTP/1.1
SERVER_ADMIN admin@example.com
REQUEST_URI /cgi-bin/printenv
SERVER_SOFTWARE Apache/1.3.29 (Darwin) mod_fastcgi/2.4.0

mod_ssl/2.8.16 OpenSSL/0.9.7b
SERVER_ADDR 127.0.0.1
HTTP_ACCEPT_LANGUAGEen
DOCUMENT_ROOT /Library/WebServer/Documents/www.qilan.com

Page 151

Session Server

What is a Session Server?

A session is the exchange of information between a client and a server.
Because the HTTP/ HTTPS protocol is a stateless protocol, a session server
maintains and stores state information between and amongst client requests.

Server-side connections can use the session_id to both store and retrieve
information on the client side of the connection. The addition of a simple,
persistent, client-side state significantly extends the capabilities of Qilan.
When returning an HTTP object to a client, a server may also send a
session_id (reference to state information). The session_id, imbedded in the
URL string, references a file for which that state is valid.

Got it? The concept of a Session Server can get really obscure, but it
simply enables data can be passed from form to form without being
sent to the client (as hidden input values) or stored in a database.

Let’s try an example… Suppose you want to keep track of a
customer’s number. Your site has lots of pages the customer can visit.
How do you know the customer number as they navigate throughout
your site? One way is to retrieve then pass the customer number back
as a hidden html input value for each form. This works, but requires
additional web page construction and allows the customer number to
be viewed in the html page source. A potential security risk. Another
option is use ‘cookies’ to store the customer number. Again,
additional web page construction is required and not all clients enable
cookies or feel comfortable using them. Lastly, html ‘meta’ tags can
be used to store some types of state information, but is often not
reliable.

Qilan, on the other hand, keeps client values on the web server in a
special file.

Page 152

Creating Sessions

The session server is automatically invoked whenever any framework field
is designated as a ‘variable’. Access to this setting is achieved by double
clicking on the framework field icon.

Qilan then performs the following actions when a client accesses a
WebTemplate, located in the same framework as the designated field(s):

qilan.cgi is invoked;
A file is created in /Library/Qilan/Sessions;
A timestamp is written to the file;
SESSION_ID is valued;
The html file is executed; and
Session variables (name/value) are written to the file;

Qilan makes the file name available as an environmental variable,
“SESSION_ID”. Use of this environmental variable in the URL string will
return a link to the file and its contents:

[IP_Addr]/cgi-bin/qilan.cgi/.[SESSION_ID]/[html_name]

When qilan.cgi executes the WebTemplate, framework fields of the same
name as contained in the session file will be valued from the session file.

Note, the period (.) preceeding the session_id is required. This syntax
is necessary to designate the following string as the SESSION_ID.
Also note that session_ids may exceed 30 characters in length.

I recall saying that viewing a hidden input value may present a
security risk, so why doesn’t the same apply to the session_id? There
are three reasons. First, Qilan creates machine unique session_ids;
second, the id itself is internally protected against attempted hacking;
and third, session_ids expire. Don’t get me wrong, nothing is perfect.

Page 153

Session files are created or updated when one or more Framework fields are
denoted as ‘session variables’. If a Framework contains fields marked as
‘session variables’, the loading of any WebTemplate in that Framework will
trigger the creation or updating of session files.

Qilan will create new session files if the session ID does not exist in
the URL string, otherwise the existing session file will be updated.

Qilan will only update unexpired session files.

Session information pertains to the site, not just the page. By this, I
mean that you will want to establish a session file as every user
accesses your site, then keep updating that file until they leave or the
file expires. To accomplish this, create a site ‘portal’ page. This page
can be used for login, site introduction, and table of contents or just
about anything else. The key is to funnel users through this page
before any other page is accessed. This page is then used to create the
session file. From here on, the browser will use a session ID and
display it in the URL string.

On your portal page, use a BASE tag to set an absolute path. This path will
then be prepended to all subsequent requests for WebTemplates. Note how
the path incorporates the environmental variable, SESSION_ID.

The abacus, ‘env_session’ gets the environmental variable, SESSION_ID.

The BASE tag will then be generated as follows:

"192.168.1.3/cgi-bin/qilan.cgi/.V3PfjYPsa3EB22chGRuoYPfjYPsa3En/"

You might wonder why an absolute path and not a relative one? The
reason is that the browser is responsible for using the BASE path, and
not all browsers interpret the BASE path the same way. Your
situation may be different, however.

Page 154

Once you set the BASE, all future references to WebTemplates need only
refer to their location relative to the BASE path. This applies to the FORM
action attribute as well as links.

The following WebTemplate shows the basic elements of a ‘portal’ page.
Note the BASE tag – the “base” abacus is used by the ‘href’ attribute. The
FORM tag’s action attribute will post the values from this page to the form,
“test4”.

What’s the QASSIGN for? Field1 is denoted as a ‘session variable’. When
this form is submitted, the value assigned to field1 (some_text) will be
placed into the session file. The form ‘test4’ will retrieve this value even
though the value of field1 is never actually submitted.

Page 155

Test3 appears on the browser as follows:

A name has been entered, but the value assigned to field1 originates from
the abacus, ‘some_text’.

When we click the submit button, the following screen appears:

Note how both the input and assigned values are retrieved. Qilan knows
where to get the values for the page, ‘test4’, because the URL contains the
session ID (see below).

Page 156

The WebTemplate, ‘test4’ follows. Only QVALUE tags are required to
display the data.

Page 157

Session files are accessible until they expire or are deleted. The expiration
date/time is updated each time the session file is accessed. An automatic
expiration length can be set in Project Settings; the default is 60 minutes.

Session files are NOT automatically deleted. They must be either manually
deleted or removed by using a system script.

Expired session files must be deleted or they will quickly accumulate
and cause system difficulties.

You might wonder why Qilan just doesn’t delete session files for you
automatically. The reason is really quite simple – it’s your machine!
Mac OS X uses a complex scheme of user permissions and file access
mechanisms to maintain file integrity and system security. In order
for Qilan to delete session files, Qilan would have to access to the root
user, not a good thing.

Now, let’s make this as painless as possible.

OS X incorporates an executable function known as ‘cron’. Cron will
run scripts on a timed basis, from every minute to once a year. Using
a timed script to delete expired session files, let’s say once a day, we
can ask the system to perform session file maintenance.

Page 158

QilanSessionReaper

Installation of Qilan installs the file, “QilanSessionReaper” (QSR).
When this file is executed or run, expired session files will be
removed. The file is placed in /Library/Qilan/bin/.

QSR has one optional commandline parameter, [-v]. If specified, a
message is put into the log file documenting how many files were (a)
successfully deleted, (b) unsuccessfully (not) deleted, or (c) not
expired.

Available on the Qilan website is a small utility program, CronniX.
CronniX is an easy to use scheduler that allows you to run scripts at
certain times or intervals. It's a very powerful tool. Please refer to the
enclosed ReadMe for installation and operational instructions or visit
the web site at: http://www.koch-schmidt.de/cronnix.

CronniX will request you type the script you want to run. Type the
following:

/Library/Qilan/bin/QilanSessionReaper

Using the CronniX interface, set how often you want QSR to be run,
then save your settings. A recommended interval is daily for low
volume sites or hourly for more active ones.

Page 159

Record Locking

"Locking" is a term that denotes a technique for preventing users from
overwriting other users' work. Qilan supports three ways to implement
locking: optimistic, pessimistic and locking on a column. All have different
strengths and weaknesses. You may use a combination of these approaches
in your designs.

Optimistic Locking

Utilizing optimistic locking, database records are never actually locked.
When the record is first read from the database, Qilan makes a snapshot of
all the fields checked as ‘locking variables’. Before the data is updated, the
snapshot and fields comprising the snapshot are compared and if they are not
the same, the update fails.

The advantages of optimistic locking are the following:

• All databases support optimistic locking.
• Optimistic locking is easy to use.
• Optimistic locking does not use any extra database resources.

The disadvantages of optimistic locking are:

• Users are not notified that someone else modified a record until they
try to update it.
• Optimistic locking slows down updates.
• All applications or multiple projects that update a database table
must agree on the fields to lock on.

When records are retrieved using a QFIND with the ‘locked’ attribute, a
snapshot is named, created and maintained locally on the server.
QUPDATEs can reference these snapshots, thereby determining whether
intervening modifications have occurred.

Qilan stores the ‘snapshot’ in the session sever. Insure you have
correctly configured and are using the session server before
implementing record locking. An incorrectly configured session
server will result in undefined values following the QUPDATE.

Page 160

The first step is to denote one or more fields as a ‘locking variable’.
This is performed in the Access > Table > Field dialog as shown.

You may include or exclude as many fields as you desire for the record
snapshot. Snapshots are created when the record is retrieved (with a
QFIND). They are referenced (to insure they have not changed) by the
QUPDATE.

The QFIND lock attribute names the snapshot. The UPDATE lock attribute
retrieves a snapshot for a given name. In this example, the field, “Name”, is
used to create a snapshot (MySnapshot) when each record is retrieved.

Page 161

Pessimistic Locking

Qilan implements pessimistic locking at the table level. Locking occurs
when the SQL isolation level, ‘serializable’ is chosen (See QPROCESS).
Depending upon the database executing a QFIND, QUPDATE, QDELETE,
etc., on a locked table, will fail or be blocked until the table is unlocked.

The advantages of pessimistic locking are:

• Pessimistic locking can prevent users and other applications from
reading data that is being changed.
• Users are notified immediately if they cannot access a database row.
• Pessimistic locking is easy to use.

The disadvantages of pessimistic locking are:

• Not all databases support SQL serialization and the databases that do
support it may do so differently.
• Pessimistic locking uses extra database resources.
• Pessimistic locking can prevent other users from having read-only
access to data.
• Pessimistic locking can cause deadlocks.
• Pessimistic locking can cause excessive locking.

The implementation Pessimistic record locking is shown below. Tables
referenced by QFIND, QUPDATE or any other tags will be locked until all
tags enclosed by QPROCESS have been executed.

Please note, not all databases support the ‘serializable’ SQL isolation
level. Refer to your database documentation.

Page 162

Locking on a Column

One effective way to implement on-demand locking is to add a locked
column to a database. The Qilan designer can add a single column to a table
and then change a value in the column to indicate whether a record is locked.
This locked column can hold anything from a simple boolean value to a
user's name and a time stamp.

The advantages of locking on a column are:

• This method lets the user or logical design determine when a record
should be locked.
• This method enables users to see who locked the record and when it
happened.
• You can give authorized users the capability to override the lock.

The disadvantages of locking on a column are:

• This method allows users to lock a record and keep it locked
indefinitely.
• If the database connection is lost, the lock is still enabled.
• Extra database space is needed for the column.
• An extra transaction may needed to lock/unlock the record.

Page 163

SQL-92 Isolation Levels

A corollary to the concept of record locking is the determination of the
access method, in other words, the read mechanism. When using an access
method, it is important that the user know the degree of isolation supported
between processes within the same WebTemplate or amongst different users
attempting to access the same record data. This is commonly defined by
referring to the SQL-92 Isolation levels. Qilan supports all four SQL
isolation levels for processes within the scope of a QPROCESS tag.

SQL-92 defines four Isolation Levels:

• Read Uncommitted
• Read Committed
• Repeatable Read
• Serializable

Isolations levels are stated in terms of three prohibited operation sequences,
called Phenomena:

• Dirty Read
• Non-Repeatable Read
• Phantom Read

If a database does not support Serializable, then it is possible that the record
data may change within a transaction because of an update by another
transaction. Phenomena define the ways in which the record data may
change during the transaction.

When an SQL Isolation level is not defined as a QPROCESS attribute, the
database default will be used. Refer to your database documentation for
more details.

Page 164

Dirty Read

This occurs if one transaction can see the result of the action of another
transaction before it commits. Consider the following example:

T.1 Write Rollback
T.2 Read(a)

If T.2 reads the value written by T.1, then a DIRTY READ has occurred.

Non-Repeatable Read (also called Fuzzy Read)

This occurs if the result of one transaction can be modified or deleted by
another transaction before it commits. This is illustrated below:

T.1 Read Read(a)
T.2 Write/Delete/Commit

If T.1 gets a different result from the each Read, then a NON-
REPEATABLE READ has occurred

Phantom Read

This occurs if the result of a query in one transaction can be changed by
another transaction before it commits. This is illustrated below:

T.1 Select Select
T.2 Update/Create/Commit

If T.1 gets a different result from each Select, then a PHANTOM READ has
occurred

Why is this important? For the most part, this stuff is very esoteric,
but when your application starts doing weird stuff like returning
wrong data you might be more interested. Isolation levels apply to the
time between a request for data and the retrieval. If your application
has a small number of accesses, isolation levels may be moot, but as
the number of accesses increase, you should try to use repeatable read
as often as possible. Data integrity is a good thing.

Page 165

Designing Abacus Expressions

The abacus translates user logic into a form databases can understand. In
most cases, this is SQL (Structured Query Language). Qilan uses the SQL-
92 standard.

Databases which are not fully SQL-92 compliant may not work
properly or return SQL errors with some abacus constructions. If this
occurs, you can write your own SQL expression using the ‘query’
attribute for the QGROUP or QFIND tags. Otherwise, we encourage
you to use the ‘queryicon’ attribute, which references abacus
expressions directly.

Building Abacus Expressions

Abacus icons are available in the Framework or Access > Table window.
Drag an abacus from the palette, press the option-command-A keys or select
Icon > New > Abacus from the Icon menu.

Page 166

Name the abacus by highlighting its default name, then retyping. Within a
Framework or Table window, abacus expressions must have case sensitive
unique names. Abacus expressions will be grouped together, ordered
alphabetically.

Abacus expressions are built inside an abacus window. To open the abacus
window, double click on the abacus icon. This will open the abacus window
and display related palette options. If the palette is not open, select Window
> Open Palette.

The abacus window (above, right) is composed of two panes: Comments and
Expressions.

Page 167

The upper pane may be used for text comments. Place the cursor in the
upper pane and click. The text insertion cursor will appear. You may enter
as much text as necessary. When the abacus window is closed, the text will
be saved.

The lower pane, initially appearing empty, displays and allows manipulation
of the expression.

To create an expression, click the ‘Operators’ palette tab, then drag an
operator from the adjacent palette to the upper portion of the lower pane.

Page 168

The line will turn white when it is properly positioned. Release the mouse
button and the operator will appear in the window.

Page 169

Following the placement of an operator, a bold line will appear. This line
separates active (top) and inactive (bottom) expressions. The active
expression outputs the result; the inactive expression is retained for
reference, but not used. This special Qilan feature allows expressions to be
tested and manipulated without changing the original design.

To create an inactive expression, highlight the active expression, then press
command – D from the Icon menu. A copy of the expression will appear in
the inactive area. You can also highlight any section of the active
expression and drag it to the inactive area.

Page 170

The Abacus Palette

The abacus palette, used to construct abacus expressions, contains three tabs:
Operands, Operators and More.

Operands consist of fields, abacus expressions and relationships. Operands
shown on the palette will be those from the same Framework or Table as the
abacus itself.

Operators consist of functions (Please refer to the Abacus Reference for
complete details).

Page 171

The ‘More’ tab is used for the operators, “Acquire __” and “Acquire
__ From __”. Fields and abacus expressions can be from any
Framework or Table in the Project.

Using a value from outside the current window is a bit difficult to
understand. Qilan values icons when a WebTemplate is processed,
but there is no restriction on where values are obtained during this
processing. Therefore, an abacus may ‘acquire’ the value of another
field (source value from another Table or Framework), so long as the
source is valued on the WebTemplate.

Page 172

The Operands tab allows the designer to choose a relationship. Existing
relationships are displayed in the upper portion of the palette window.
Selecting a relationship changes the fields and abacus expressions to that of
the relationship’s target table.

The selection of a field or abacus is then interpreted as, “get me this value
based on the relationship link (source = target)”.

The syntax uses a dot notation, “relationship.value”.

Page 173

Relationships can be cascaded through many tables. If you select a
target table, which contains relationships, those relationships will
become available in the viewer at the top of the palette.

How far can you go? If you attempt to perform circular relationships
for example, Qilan will likely report an error (“too complex”). The
more relationships that need to transversed, the slower the data
retrieval process will become. If you find yourself going beyond three
or four relationships, you should carefully review your design.

Two points to consider… the relationship semantic and type. If the
relationship is located in a Table, the semantic can have dramatic
consequences. Always try to limit relationships to ‘inner joins’ when
possible.

Relationship types that are one-to-one will return a single value.
Relationship types that are one-to-many will return the first value
found. Designers need to be aware of the one-to-many relationship
because unexpected results may occur.

You can deselect a chosen relationship by dragging the highlighted
relationship name down to the bottom of the list and then releasing the
mouse button. This will change the Operand list to the current Framework
or Table window.

Page 174

Creating an Expression

Dragging operators and/or operands into the abacus window automatically
creates an expression with a result. For example, suppose the operand field,
“access_num” was dragged into the abacus window, the result would be the
value of “access_num”.

The selection of operators allow data to be manipulated or derived. For
example, the operator “__ followed by __” concatenates values. The use of
“__ and __”, “__ or __” and “if __ then __ else __” operators enable logical
comparisons. Operators may be used within other operators.

Page 175

In the example below, the output would be, “Steve’s Insurance – SI” when
policy_rowid is defined, otherwise the message, “Company not on file” will
be shown.

Field values or the result of other abacus expressions may be used in the
creation of new abacus expressions. When the abacus window is first
opened, the listed icons available will be from the table in which the abacus
was created (source).

The name of the abacus you are creating will be available for selection
in the abacus list. This allows recursion. Be careful not to select this
abacus unless you intend to create a recursive operation.

Note how the name of the abacus icon, “Reference.qprj/Insurance/Abacus”
also appears in the Operand list of abacus icons. If you mistakenly select the
Operand, “Abacus” and use it in itself, Qilan will report a ‘recursion error’.

Page 176

Some icon names, when viewed in the abacus window, have funky
names. Icon names containing a ‘/’ or ‘.’, will have those characters
replaced with their hexadecimal equivalent when shown in the abacus
window.

Period (.) %2E
Slash (/) %2F

The reason is simple; these characters have special meaning. Recall
that Qilan is designed for use on the internet and therefore must be
compliant with special protocols and character interpretations.

Let’s build an expression that evaluates a user’s input and returns a
result to be stored in the database. Our logic must first determine if
the value is valid, and then test for the correct format. If this is checks
out, then we want to encrypt the input with a user defined key.

We will begin by showing the final result:

Taking this apart, we start with the ‘if then else’ operator dragged
from the palette list of Operators.

Note how the parameters are empty and darkened. It’s easy to know
what to say when something is wrong, so let’s type the error message
first. Double click in the ‘else’ parameter’.

Page 177

The parameter ‘hole’ now displays a double quote. A flashing cursor
will appear between the quotes. This is your indication to begin
typing. When you are finished, just click anywhere else in the abacus
window.

The quotes surrounding entered text is not part of the literal
output. For example, the abacus appearing as, (text “steve”)
would actually output, steve – without the quotes. If you
wanted to quote the text itself, then insure the text is quoted, as
follows: (text ““steve””)

Our next step is to actually create the validation logic. There are four
items we will need to validate, so let’s create an expanded ‘and’
operator to accommodate them. Drag the ‘and’ operator to the
inactive area until the line turns white, then release the mouse button.
It is often more convenient to use the inactive area for composition
and then move the completed expression.

Now, we can drag in the abacus operators we will be using to evaluate
our data. Drag an abacus operator over an empty parameter hole until
it highlights, then release the mouse button.

Let’s complete this logic by dragging in the fields we will want to
evaluate. Then complete the parameter logic as required by ‘like’ and
‘length’.

Page 178

What we want to insure is that the input data is defined and that it is in
the pattern of ###-##-####. We also want to insure the key is defined
and at least 8 characters in length.

Now that the logic is complete, highlight the outermost parenthesis
and drag the entire statement to the ‘if’ hole until it highlights; then
release the mouse button.

Almost done. The last thing we have to do is to deal with the input
data and key when everything is done correctly. Always the hardest
part! We want to encrypt the data. Return to the palette and drag the
‘encrypt’ operator to the inactive area.

The ‘encrypt’ operator accepts strings, so to avoid the potential for
errors, let’s convert the input field value to text. We do this by
dragging the ‘text’ operator into the first parameter of the ‘encrypt’
operator. Now we are ready for the user data.

Page 179

Finally, highlight the outermost parenthesis of the inactive expression.
Click and hold the mouse button. Drag the expression over the ‘then’
parameter until it highlights, then release the mouse button. Now our
expression is complete.

At any time during the construction of the expression, you can remove
unwanted operators or operands by highlighting the element then
pressing the delete key or selecting ‘Cut’ or ‘Clear’ from the Edit
menu. Furthermore, expression elements can just as easily be
duplicated or copied.

Transferring Expressions between Abacus Windows

Expressions created in the abacus window can be dragged to other
abacus windows. To do this, open a new abacus window while the
window containing the abacus expression is open. Highlight the outer
parenthesis then drag the expression to the new abacus window.

Empty Abacus Expressions

An empty abacus (one without any operands or operators) can be
saved and used in other abacus expressions or constructions.
However, if an empty abacus expression is used or referenced by a
WebTemplate ‘Q’ tag, qilan.cgi will report the following error,
“Attribute Required”.

Page 180

Recursion Limit

Abacus expressions can use abacus results produced by other abacus
expressions. This design feature allows the designer to reuse abacus
expressions and greatly simplifies constructions as well as permits
considerable flexibility. When one abacus uses another abacus, Qilan must
evaluate the first abacus before the result of the second abacus is determined.
The number of abacus expressions that must be evaluated before the result is
output is referred to as the recursive ‘depth’.

Generally, a depth of ‘100’ should be considered a reasonable design
maximum. If abacus expressions do not refer to themselves (directly or
indirectly), this limit will not likely be reached. However, when an abacus
refers to itself (directly or indirectly) or has been inappropriately designed
(circular logic), it is possible to reach this limit.

Qilan allows the designer to set a maximum recursive depth. When this
value is reached, the engine, qilan.cgi will report an error to the user (via the
browser interface).

To set a maximum recursion depth, select Edit > Project Preferences…
Double click on the line labeled, “Recursion Limit”. If no value or 0 is
entered, there will be no limit. Enter any value you want, then tab. The
default value is 100. The setting is saved when the project is saved.

If you set a recursive depth of ‘0’, and you make a design error, Qilan
(and possibly your server) will appear to hang and may even make it
impossible for you to quit the process. We strongly suggest you set a
recursive depth.

Page 181

The WebTemplate

WebTemplates are used to create user interface forms and/or data processing
mechanisms. They are created in a Framework.

WebTemplates have four primary functions:

WebTemplates format user and database data (input/output). Qilan
defaults to using HTML, but potentially, any DTD can be used.

WebTemplates retrieve data base data. Data can be queried using a
flag formatted abacus icons or with standard SQL. Fields or derived
values are accessible as well as standard summary functions.

WebTemplates trigger the storage, updating or deletion of database
data. Using relationships and dataflows, data can be created, updated,
deleted or transferred from one database to another.

WebTemplates logically manipulate data and program execution.
Using the wide variety of ‘Q’ tags, logical steps can be created to test,
evaluate, loop or control procedural constructs.

Page 182

Choosing a WebTemplate DTD

The multifunction design of the WebTemplate requires a bit of planning
before we ‘just create one’. WebTemplates are defined by a very specific
format, which governs the legal placement of HTML tags as well as what
tags and attributes are available. This format is known as the DTD
(Document Type Definition).

When a WebTemplate is created, it conforms to the DTD as specified in the
Project Settings. Once created, a WebTemplate DTD cannot be changed,
although each WebTemplate can have different DTDs.

Qilan supports copy/paste WebTemplate elements from one
WebTemplate to another, regardless of the DTD type.

How do you choose the correct DTD? Ah, the question of the ages!
(Not really). DTDs define a set of tags, attributes and legal structure
for the web designer. If you need to use frames, for example, then use
the ‘Frameset 4.0 DTD’. What you need to watch out for is that the
browser (rendering application in technical terms) may not know what
to do if it encounters specialized tags. Almost all browsers today
know how to handle DTD 3.2. This is your common denominator.
As time progresses however, the 4.0 DTDs are becoming the accepted
norm. DTD 4.0 loose is my choice because of its backward
compatibility with the 3.2 specification and inclusion of many new
features.

Some databases, notably Helix, actually have their own DTDs. This
is because specialized tags are necessary to handle data transport. If
you are communicating with Helix, you will need to use a Helix DTD.

So, consider your data needs, design and likely audience when
choosing a DTD.

Page 183

WebTemplates are available in the Framework window. Open a Framework
by double clicking on its icon from the Project window then drag a
WebTemplate icon into the Framework window from the palette.
Alternately, you can press command-option-W. Rename the WebTemplate
icon by highlighting the default name and retype.

Frameworks may have an unlimited number of WebTemplates as well as
share common icons, such as fields, abacus expressions, relationships and
dataflows.

Page 184

Double click the WebTemplate icon to open the WebTemplate window and
display its palette. Note, if the palette does not appear, choose Window >
Show Palette.

The WebTemplate window consists of an upper and lower pane. The upper
pane has two lines for text entry: the first gives the WebTemplate an
exported name and the second to enter text comments.

WebTemplates are designed and maintained using the Qilan
developer, but not available for web access until they have been
exported. The ‘export’ process creates a special file that is executed
by qilan.cgi when requested by a web user.

The location of the exported file is defined by the ‘HTML File Root
Directory’, in the Project Settings. So, if the root directory is
/Library/Documents/, all the exported WebTemplates will be located
in /Library/Documents/.

Page 185

The name of the WebTemplate can be anything you want; suffixes are
optional and need only be used if the web server requires a specific MIME
type or the WebTemplate requires special processing. If you do not name
the WebTemplate and choose, Export HTML, the WebTemplate icon name
will be used with a .qprj suffix.

A word of caution, if all the WebTemplates are exported to the same
directory, insure they all have unique names otherwise you may
accidentally overwrite existing WebTemplates.

When you are ready to export the WebTemplate, choose Export HTML from
the File menu. The WebTemplate window must be the active window for
this command to be available.

If you want to export all your WebTemplates at the same time, choose
Export All HTML from the File menu. This command is always available.

Here’s a hint… If your project gets really large, choosing Export All
HTML can take a long time. Also, if you set the Project Settings to
‘Export All WebTemplates on Save’, the same time delay can occur
each time you save the project. To help, only export the
WebTemplate you are working on and deselect the option to ‘Export
All WebTemplates on Save’. At the top of each WebTemplate is an
‘export’ icon. The one with the ‘Q’ pictured on the hard drive. Click
this to export.

The second line in the upper pane is used to enter text comments.
Comments will be saved when the WebTemplate window is closed.

Page 186

The central portion of the WebTemplate window is where you layout your
page. The section organizes all your ‘background’ construction (abacus
expressions, fields, relationships, etc.) and creates a process. It is this
‘process’ that is executed by qilan.cgi. HTML formatting is fully integrated
and/or controlled by this process.

When a new WebTemplate is opened, Qilan will automatically insert
required HTML tags for the selected DTD.

At the bottom of the webtemplate window is a status bar. When a tag
hightlighted, the status bar will display the tag’s name and line number as
well as the name and line number of its parent tag. If the tag is dragged to a
new location, the status bar will update to inform you of its new location and
parent tag.

Page 187

The WebTemplate Palette

When the WebTemplate window is opened, the palette will display three
tabs: Tags, Values and Links.

The Tags grouping contains all the HTML tags valid for the DTD (upper
portion), Qilan ‘Q’ tags, and a special tag for entering text, “Text Block”
(lower portion).

To select a tag, click on its name and press and hold the mouse button. Drag
the tag onto the WebTemplate until you see a small insertion arrow, then
release the mouse button.

Page 188

The Values grouping displays fields and abacus icons from the Frameworks
and Tables. All Frameworks and Tables are accessible.

To select a field or abacus expression, first choose a Framework or Access
Table from the Access popup, then a specific Table. The fields and abacus
expressions will then appear.

To view the field or abacus icons, click on the respective icon in the middle
portion of the palette window. To select an icon, click on its name and press
and hold the mouse button. Drag the icon name onto the WebTemplate to a
‘black hole’ then release the mouse button.

Page 189

The Links grouping displays Access, Table and DataFlow icons from the
Frameworks and Accesses. All Frameworks and Accesses are accessible.

The Links tab enables the designer to connect database elements. To select
an Access, Table or DataFlow, first choose a Framework or Access Table
from the Access popup, then a specific Table.

To view Access, Table or DataFlow icons, click on the respective icon in the
middle portion of the palette window. To select an icon, click on its name
and press and hold the mouse button. Drag the icon name onto the
WebTemplate to a ‘black hole’ then release the mouse button.

Page 190

Building a WebTemplate

Fundamentally, a WebTemplate is HTML document, composed of
formatting tags that define the layout structure, links and form controls.
Qilan adds special ‘Q’ tags that are used integrate data, control processing
and link to external database systems.

While the vast majority of your WebTemplates will be accessed by a web
user, WebTemplates can be used or ‘called’ by external scripting programs.
When used in this way, HTML formatting is unnecessary.

Let’s start by displaying a list of records from an Access > Table.
Open a new WebTemplate window and drag out a Text Body tag.
Drag this tag into the TITLE tag until the insertion arrow appears
below and indented, then release the mouse button.

After the tag is ‘placed’, double click the Text Block to begin typing. Type
the page’s title, “My List”. When you are finished, click anywhere outside
the Text Block.

Page 191

Qilan uses an outline structure to format HTML and ‘Q’ tags. Indents
are used to indicate the closing of tags and processes. Therefore,
closing tags are NEVER used.

To begin the retrieval of list data from the database, we first have to identify
the database, using its Access icon. Recall that the Access icon contains the
location of the database and logon information. Qilan’s QLOGIN tag is
used to link the Access. Click the palette’s Tags tab then drag QLOGIN
onto the WebTemplate. Although a QLOGIN can be placed anywhere on
the WebTemplate, it must be placed prior to any other ‘Q’ tag that accesses
the database. To complete the QLOGIN, we will select an Access, from the
palette and drag it into the black hole labeled, “database”.

Page 192

This is a good time to point out how Qilan reads the WebTemplate.
Simply, top to bottom. As tags are encountered, they are processed.
This is the reason a QLOGIN must occur before other ‘Q’ tags that
access the database. As you become more sophisticated in your
designs, you will find that tag placement can be used as a tool in
controlling processes.

The next task will be to retrieve the database data. We will break this into
two parts: format and retrieval. Qilan has several ‘Q’ tags that retrieve data,
but for simplicity sake, let’s use a Table.

An HTML Table is merely a format structure, however a QTABLE
integrates a Table format with data retrieval options. Continuing with our
construction, drag a QTABLE from the palette so that it is placed just below
the QLOGIN.

Page 193

QTABLE appears just like an HTML table, but contains a special element,
‘fields’. Double click on this line and the following dialog opens:

Field List allows for the selection of fields and/or abacus expressions from a
specific Access > Table. Those items checked (by double clicking), will be
retrieved. Note that ‘retrieved’ doesn’t mean ‘displayed’. That comes next.
When you finished, click ‘OK’.

Page 194

The WebTemplate now shows our selected fields. While the QTABLE tag
is highlighted, select New Attribute from the Icon menu.

All the HTML attributes will be shown along with Qilan data options. For
example, we will want the list to be sorted, so the ‘sort’ option is selected.
By default, the sort order is in ascending order. We also want a border, so
we choose this attribute as well.

Some attributes, such as ‘border’, require a specification. Double click on
the line labeled, ‘border’ and enter the number ‘1’.

How do you know what attributes require specification and what
values are acceptable? If you are unfamiliar with HTML, this can be
a bit difficult. We suggest you consider using a graphical layout
program (and import the HTML source code), consult with an expert,
or grab yourself a good book on HTML. A bookstore with a large
computer section is an excellent resource. The internet also has many
web sites that can be very helpful.

Page 195

To choose a sort order, we need to select a Table field from the palette.
Select the same Access and Table chosen in the Field List dialog, then drag
the desired field to the black hole adjacent to the sort attribute.

Page 196

Now its time to layout and display the data. A nice table has column labels.
This table will have three columns. Let’s add the tag, THEAD. This tag
will be used to show column labels and will not iterate.

What’s iteration? Qilan’s QTABLE tag repeats the TBODY section
for each record retrieved. This is a very cool feature. In effect, the
TBODY section is built for one record (or row), then just repeats itself
until the list is complete. Other table tags, THEAD and TFOOT
(known as ‘sections’) do not repeat.

TD tags are added to the TBODY section to layout the data display.

Page 197

QVALUE tags display data; the QTABLE tag retrieved the data. Drag
QVALUE tags from the palette so that they are indented inside each of the
three TD tags. Note how each QVALUE has a black hole. This is where the
field or abacus icon goes.

To get the field or abacus icons, select them from the palette (Values Tab).
Select the same Access and Table chosen in the Field List dialog, then drag
the desired field or abacus icon to the black hole(s).

This WebTemplate can now be accessed from the internet:

http://[IP]/cgi-bin/qilan.cgi/My_Form

Previewing a WebTemplate in an Internet Browser

On the webtemplate toolbar, clicking the ‘preview in browser’ icon will
open the webtemplate in your default internet browser.

If have made changes since the last time you exported the webtemplate and
want to preview them, make sure you re-export the webtemplate prior to
previewing them in the browser.

Note that the default URL string (See Project Settings) is set for qilan.fcgi.
If you have not installed FastCGI, you should change the URL path so that
qilan.cgi is used. Failure to do this may result in the Apache error, ‘Page
Not Found’.

Page 198

Webtemplate Printing

To aid in the development process as well as document your work,
webtemplates can be printed in a structured format. The layout is very
similar to the way webtemplates are presented in the lower portion of the
Uses window.

At the top of each webtemplate, on the toolbar, you will find an icon for
printing and page setup.

If they are not present, select ‘Customize Toolbar’ from the Icon
menu, while a webtemplate is open and the active window. Drag the
print and page set up icons to the webtemplate toolbar.

To print the webtemplate, click the print icon. The webtemplate will be
printed immediately. At the top of page 1, the following information will
appear:

Qilan Version Registration Info Date/Time
Project_Name/Framework_Name/Webtemplate_Name

Page 199

Inserting Tags

HTML and ‘Q’ tags are dragged onto the WebTemplate to construct the
page. Typically, HTML tags are used for formatting and layout while ‘Q’
tags are used for data processing and form control.

As the tag is dragged from the palette onto the WebTemplate, a small arrow
will appear. This will indicate a ‘legal’ placement. If you do not see an
arrow, the tag cannot be legally placed.

Tags dragged from the palette onto the WebTemplate window will be
checked against the DTD for legal placement.

Page 200

Qilan strictly enforces tag placement according to the selected DTD.
While this is desirable in most circumstances, it can be limiting for the
intrepid designer. Consider the situation where a database value
needs to be obtained for use inside a HEAD tag. DTDs will prevent
the placement of most Q tags.

To get around this limitation, you can directly modify the DTD file
(for the fearless developer) or merely hold down the option key when
you drag a tag. Qilan will allow a tag to be placed anywhere a child
tag is permitted. Placing tags where a browser may interpret them as
being ‘illegally placed’, may result in display errors or unexpected
anomalies. Always test your designs.

Selecting Tag Attributes

Most tags have ‘attributes’. These are special settings or extensions that are
used to modify or enhance the tag’s format or functionality.

Some tags, especially INPUT tags, will not function properly without
‘attributes’. Please refer to an HTML reference or qualified
professional for assistance with HTML attribute settings.

Attributes may be associated with a tag by first highlighting the tag in the
WebTemplate window, then choosing the attribute from Icon > New
Attribute submenu.

Page 201

You can add as many attributes to a tag as necessary. As you add new
attributes, they will be listed vertically adjacent to the tag.

Some attributes require additional specification, which must be typed
directly onto the WebTemplate. Double clicking on the attribute line will
display a cursor indicating where the ‘value’ is entered. After you have
finished typing, click anywhere else on the WebTemplate.

If you want to remove an attribute, highlight the attribute line, then select
Edit > Clear. Be careful not to select Edit > Cut, or the entire tag may be
removed.

You can also remove any WebTemplate element by highlighting the element
then pressing the DELETE key.

Page 202

As with tags, attributes are also defined by the DTD. If you need to
use an attribute not available in the pop-up menu, you will have to add
it to the DTD. Please refer to the section at the end of this manual that
explains how this is done. It is not difficult, but does require you to
be rather precise with reference to your typing.

Text Blocks

Text blocks are available for insertion anywhere allowed by the DTD. They
are used to display user text, as typed. Drag a text block from the palette by
clicking on the Tags tab. Text block is located at the bottom beneath the ‘Q’
tags.

Page 203

A text block indented within the H3 header tag. The text will formatted as
header text when shown on the client browser.

When Qilan serves the exported WebTemplate page to the client
browser, ‘Q’ tags and other non-HTML tags are removed. Text
blocks are considered part of the HTML and will be passed without
parsing. Text blocks may be used for JavaScript or text display, but
HTML code should be avoided. Unexpected errors may result if
improper HTML syntax is encountered

Page 204

WebTemplate Editing

Tags placed on the WebTemplate are automatically formatted as an outline.
This structure is used to format the HTML and as well as control the
assignment of variables during processing.

Most HTML tags require explicit termination. This means that when a
format is ‘declared’ or started, the browser needs to know where it ends. For
example, here is the TABLE syntax:

<TABLE>
<TBODY>

<TR>
<TD>
</TD>

</TR>
</TBODY>

</TABLE>

Tags starting with ‘</’ are closing tags.

Qilan uses tags from the palette to start a format, such as a TABLE, but does
not require an explicit closing tag. A closing tag is inferred as soon as
another tag is encountered at the same outline level as the opening tag.

Page 205

Those little disks in front of the tags, what do they do? Tags
containing indented tags (think of a parent/child relationship) can be
collapsed so that only the parents are displayed. This makes editing
the WebTemplate easier and, for very large WebTemplates, helps to
speed up redrawing. To collapse a parent tag, just click on the disk.
A collapsed tag will display a solid disk otherwise the disk will have a
hole in the middle. Note that each time a WebTemplate is opened, all
tags will be expanded.

WebTemplate tags and outline sections can be dragged/copied/pasted
between or within WebTemplates. To copy an outline section, highlight the
tag or outline section, then choose Edit > Copy. If you first collapse the
outline section, large sections can be copied at one time.

Open a new or existing WebTemplate, highlighting a valid parent HTML
tag, then Edit > Paste.

What’s a valid parent? A parent is a tag can legally contain children,
and a child tag can legally be ‘owned’ by a parent. For example, you
cannot paste a TR tag into a TD tag, but you can paste a TD tag into a
TR tag.

Now that’s clear, what’s the story with the BODY tag? If you copy a
BODY tag (with all its contents), how do you paste this into a new
WebTemplate? What’s the parent? Because Qilan creates new
WebTemplates with a defaulted BODY tag, you must first remove the
defaulted BODY tag before a new one will be allowed. This is due to
the fact that only an HTML tag can be a parent for the BODY tag.

Page 206

WebTemplate tags or outline sections copied to other WebTemplates within
the same Framework will maintain all field, abacus and dataflow references.
If you paste into a different Framework, Qilan will create needed fields,
abacus icons and dataflows. Carefully note the following:

Target fields of the same name will be replaced. If a target field has
been designated as a session variable, the value will become that of
the source field.

Target abacus icons of the same name will not be replaced. New
abacus icons will be created with their name appended by the number
‘1’. New abacus icons created in the target Framework will be
undefined.

Relationships and DataFlows will be created using replaced fields
and/or new abacus icons, as appropriate.

Copied sections referring to Tables or their contents will not alter
Table elements.

Double clicking on a WebTemplate icon will open the icon widow. This
permits direct editing. Some attributes can accept user text or an icon.
When both are permissible, select, Icon > Open Icon from the menu.

Page 207

A few words about Variable Assignment…

Qilan processes (executes) a WebTemplate with respect to a ‘Q’ tag’s
relative outline position. For example, if data is located using a QTABLE or
other find derivative, the data is only accessible within the scope of the
QTABLE.

In the above example, QVALUE is valued by the QTABLE retrieval of
‘Movies/MOVIE/TITLE’. The value is within the scope of QTABLE.

If we attempt to display the value of ‘Movies/MOVIE/TITLE’ outside of the
QTABLE scope, as shown above, the value will be undefined.

Page 208

We can re-assign the value of ‘Movies/MOVIE/TITLE’ to a Framework
field, in which case it can be displayed or reused elsewhere on the
WebTemplate.

In the following example, a search is performed for each record returned by
the QTABLE. The queryicon (shown below) used by the QFIND refers to a
QTABLE value. The relative position of the QFIND to the QTABLE allows
the query to retrieve the proper value.

Values assigned to Framework fields will be retained during WebTemplate
processing until and unless they are re-assigned.

Page 209

In this example we use the same framework field to display three different
summary totals. Each QGROUP contains the same QVALUE icon, “sum”.
As each QGROUP is calculated, its retrieval is assigned to “sum”. Qilan
will re-assign the value of “sum” each time a new QGROUP is encountered.

Page 210

 WebTemplate Line Numbers

When a WebTemplate error occurs due to a design error, SQL problem or
other anomaly, Qilan will refer to a specific line number on the
WebTemplate. For example here is an error shown by the browser:

Note that line 10 is referenced.

By default, line numbers are not shown. To display line numbers, select,
‘Line Numbers’ from the Icon menu with the WebTemplate window open.

Page 211

Importing Existing HTML

In order to facilitate HTML design, Qilan allows a designer to import
existing HTML documents. An imported HTML document will be
converted then displayed in Qilan’s outline structure. You may then add ‘Q’
tags to perform data processing.

Before you import an HTML document, check its HTML version. You can
locate this information at the top of the document when viewed as source
code. If you cannot find this information, use the DTD for the HTML
version 4.0 loose.

Open Edit > Project Preferences. Select the HTML DTD type. Close
the Project Preferences window.

Drag a new WebTemplate icon (from the palette) into the framework
window. Double click on its icon to open the WebTemplate window.

Choose ‘Import HTML…” from the File menu.

HTML comments <! -- through -- > will automatically be placed into Text
Blocks. Insure comments are properly formatted prior to import.

When JavaScripts are imported, they will appear in Text Blocks
within the <SCRIPT> tag. If you are using a DTD that requires a
'type' attribute, check to insure it is properly declared, otherwise your
JavaScirpt may not function properly. JavaScript authors do not
always define this attribute.

Also be aware that an HTML comment is not the same as a Qilan
QCOMMENT tag. HTML comments will be passed to the browser,
but not shown to the user (except as 'source'). Items placed within a
QCOMMENT tag will not be passed to the browser in any form.
JavaScripts should not be placed within a QCOMMENT unless you
do not want them to be processed by the browser.

Page 212

Import considerations…

Importing an html file into an existing WebTemplate, will replace its
contents. If you do this by accident, choose Edit > Undo.

Importing a Qilan WebTemplate will result in an error unless it is imported
into the same framework from which it was exported.

It is suggested you rename the imported HTML document after it has been
imported, otherwise the original document will be overwritten.

Qilan will import HTML without regard for the DTD used to create the
source file. Importing a 3.2 DTD into a 4.0 DTD may result in errors or
unexpected behaviors. Specifically, some tags may not be able to be moved,
relocated or deleted. If this happens, try to correct the source code or add
the necessary legal HTML tags. A typical problem occurs when a 3.2 DTD
table is imported into a 4.0 DTD.

Although the 4.0 DTD specifications make the use of <TBODY> tag
optional, Qilan requires it. Before you import, insure this tag is properly
inserted in your HTML source code. If a <TBODY> is required, but not
present <TR> tags cannot be moved or removed. The solution is to add a
<TBODY> (to the table) as the parent tag to all the <TR>s.

As an artifact of importing an HTML file, Qilan will place a text block
whenever a carriage return is encountered. You can either remove text
blocks after import or remove carriage returns from the HTML source file
prior to import. Either way, they will not affect the display of the HTML
page.

Page 213

The ‘Q’ Tags

Qilan provides the designer a variety of unique processing tags. These tags
are specific to Qilan and do not appear in a readable form when accessed
from a client browser. Most tags have attributes that are necessary for
proper processing or offer additional functionality. Please review each tag
carefully.

‘Q’ tags may be used as often as necessary within a WebTemplate. They
may be fully integrated into the HTML or used separately outside of
standard HTML formatting.

‘Q’ tag syntax is not passed to the browser as ‘source code’, except when
they are used to display data. For example, QUPDATE, QWHILE, QFIND,
QLOGIN, QIFBLOCK, etc. are parsed, whereas data results of the
QVALUE tag are sent to the browser.

Qilan processes ‘Q’ tags as they are encountered on the WebTemplate. You
can control the order of processing by the placement of ‘Q’ tags on the
WebTemplate. Tags appearing at the top will be processed first; those
appearing at the bottom, processed last.

If you have been reading the manual from the beginning, you have
heard this before, “processing is top to bottom”. Why does this really
matter? As you construct your WebTemplate you will want to want to
control when an action occurs. For example, before a record is
created or updated, you may want to evaluate its contents, change
another record or even delete it. This type of timing control is also
known as creating a procedure. Don’t be put off by this, it is a
wonderful programming construct that is very nicely implemented by
Qilan. Visually, you can see exactly when actions are going to be
performed. Yes, it can get complex, especially when combined with
logical operators (if/then/else).

Page 214

QASSIGN

This tag assigns any value to a Framework field. It is used to create or
update an icon value so that its new value can be used elsewhere on
the WebTemplate. The value of a field icon set by the ‘QASSIGN’ is
discarded (except when designated as a session variable) after the
WebTemplate process is completed.

Attributes

ICON: A framework field dragged from the palette (Values Tab).

VALUE: A field or abacus dragged from the palette (Values Tab),
whose value has been previously obtained from a QFIND, QGROUP,
QASSIGN, QVALUE or another framework field or abacus.

For those of you with some programming experience,
QASSIGN works just like ‘variable’ assignment. Because
Qilan only retains values during its execution, assignment is
always ‘local’. If you want to create a global variable, you
must store the value on the web server as a session variable or
in a database.

In this construction, we want to find how many records are
retrieved from the database, but rather than performing a
summary count, we just want to increment a counter. Faster
and easier.

We start with a setting the value of ‘count’ at zero. Each time the
QFIND iterates the icon count is set/reset to the abacus calculation of
(count+1). When the last record is found, the value of count will be
equal to the number of times the QFIND iterates (the number of
records retrieved).

Page 215

Many times you will want to retrieve a value from a database,
then use that value in a Framework calculation. Here’s an
example:

The value Movies/MOVIE/MOVIE_ID, obtained using a
QTABLE, is assigned to the Framework field, ‘movie_id’.
This field is then used in a relationship. This construction can
be used to obtain single values from different databases based
on a common link. An abacus expression, based on the
relationship link is used to retrieve the data.

Page 216

QCOMMENT

This tag is used to display or store WebTemplate structure (text,
HTML tags and ‘Q’ tags) without processing by qilan.cgi or being
passed to the browser. Its most common use will be to document
WebTemplate constructions or just add comments to the
WebTemplate.

Attributes

TITLE: Any user defined text entry. Entries will only appear on the
WebTemplate and are not passed to the browser.

QCOMMENT can be placed almost anywhere on the
WebTemplate. Any tags placed within its outline level will be
excluded from processing. For example:

The QFIND and and iteration sequence will appear on the
WebTemplate, but will not be processed. QCOMMENT and its
subordinate tags will not appear on the web page.

This tag is very useful when there are portions of your
WebTemplate that need debugging. It functions just like the
comment characters in JavaScript (//). You can also use it to
store WebTemplate fragments.

Page 217

QDELETE

This tag deletes queried records in a specified table. If a query is not
specified, all records in the specified table will be deleted. The use of
this tag requires a QLOGIN on the same WebTemplate as the
QDELETE. The user defined in Access, or entered as an attribute of
the QLOGIN, must have delete permissions for the database table (in
the database), otherwise the QDELETE will fail.

QDELETE is a very powerful tag that instantly (and quietly)
removes data rows from a specified table. By default,
QDELETE will remove all table records. Using a query or
queryicon, you can selectively delete one or more table records.
All records, which meet query criteria, will be removed when
the tag is encountered on the WebTemplate.

Attributes

TABLE: A database table icon dragged from the palette (Links
Tab). The selection of the table will automatically choose the
database.

QUERYICON: A flag type abacus dragged from the palette
(Values Tab), built to query the records in the specified table.

Queryicons need to be built in the same table as
represented by the data. The field dialog window selects
the table; the palette values tag is where you will select
the corresponding table and abacus expression.

Page 218

QUERY: A SQL query statement. A QUERY will take
precedence over the QUERYICON.

A QUERY may be constructed in a database table, a
framework abacus expression or typed directly on the
WebTemplate itself. A QUERY is the portion of the sql
Select statement following the ‘Where’ clause. When
referencing a table field, be sure you use the field’s
‘external name’, not the Qilan name.

The following example deletes records in two tables. Queryicons
(shown below) are used for each QDELETE. Additionally, the field,
“delete”, valued when this form is submitted, is used to trigger the
QDELETE tags.

Page 219

QIFBLOCK

This tag is used as the parent tag for logical evaluations. All
subsequent logical tags must be within the scope of a QIFBLOCK.
Tags used to construct logical statements are QIFTHEN, QIFELSE
and QELSE.

A WebTemplate may contain as many QIFBLOCKs as desired.
Nested QIFBLOCKs are permissible.

What’s a logical evaluation? Simply, this is choosing an action
based on some condition. The ‘condition’, is a boolean value
(Yes, No, True, False, 1, 0); the ‘action’ can be just about
anything, including another logical evaluation.

Attributes

NONE. When a QIFBLOCK is placed on the WebTemplate, a
QIFTHEN is automatically inserted.

Here, the QIFBLOCK contains a logical QIFTHEN/QELSE. The
entire block is placed located inside a TD tag.

Page 220

QIFTHEN

This tag specifies a condition, where tags placed below and indented
under the QIFTHEN, will be processed. One QIFTHEN tag is
required for each QIFBLOCK, although its icon may output an
undefined value, in which case it will be ignored.

Attributes

ICON: A framework flag type abacus or field dragged from the
palette (Values Tab). If the abacus or field result cannot be
coerced to a flag type or is undefined, the QIFTHEN will be
ignored.

QELSE

Outputs tags placed beneath and indented when the condition
specified for the QIFTHEN are not met.

Attributes

NONE

QELSE is an optional tag. When a QIFTHEN is used
without a QELSE, nothing will be processed when a
condition is unmet.

Here an abacus outputting a flag is used to control the display.
Based on the flag output, a text display will result.

Page 221

This construction will output nothing if the flag is positive. The
text will be output if the flag is negative or undefined.

This construction will output the text only if the flag is positive.
Note that the QELSE is omitted.

Page 222

QELSEIF

This tag may be used instead of a QELSE to build more extensive
logic within a single QIFBLOCK.

Attributes

ICON: A framework flag type abacus dragged from the palette
(Values Tab). If the abacus or field result cannot be coerced to
a flag type or is undefined, the QELSEIF and all indented tags
below it will be ignored.

Here we have created a single QIFBLOCK with branching
logic. One output is established for a positive result, but three
outputs are used for a negative result.

Qilan processes QIF logic more efficiently when branching
logic is used within a single QIFBLOCK, rather that using
multiple QIFBLOCKs to accomplish the same thing.

Page 223

QFIND

This tag retrieves records from a database table. Fields and/or abaci
can be specified.

If a query is not specified, all records will be returned. The use of this
tag requires a QLOGIN on the same WebTemplate and before the
QFIND. The user defined in Access, or entered as an attribute of the
QLOGIN, must have access permissions for the database table (in the
database), otherwise the QFIND will fail. If you design your
WebTemplate with multiple QFINDs (all accessing the same Access),
only one QLOGIN is required.

For each record retrieved, all tags within the scope of the QFIND
tag will be repeated. This behavior is known as iteration.

Attributes

FIELDS: A specified field and/or abacus to be retrieved from a
database table.

Selecting a field or abacus will make it available for use
by other ‘Q’ tags (i.e., QVALUE, QASSIGN) and/or
abacus calculations (i.e., acquire __).

When a QFIND is placed on the web template, the field
attribute will appear automatically. Double click on this
line to open the Field List window. Use the pop-ups at
the top of the window to select the proper table, then
select as many fields or abaci as necessary by double
clicking in the checkbox column.

Page 224

NAME: An identifying value that references QFIND as an
object.

Naming a QFIND tag enables Qilan to reference fields or
abacus expressions retrieved by a specific QFIND when
the target tag is ambiguous. A name may be a user
defined text entry or a value generated by a field or
abacus expression. When a name is referenced by an
abacus, it must match exactly. See ‘acquire __ from __
and assign __ from __ for more details.

Wow, ambiguous tags! Yes, this really can happen.
Consider three nested QFINDs. If your queryicon from
the inner most QFIND ‘looks out’, how will Qilan know
which of the two enclosing QFINDs you want to get a
value from? By default, Qilan will use the enclosing
QFIND, but to change this behavior, we need to use the
name attribute.

Page 225

In this example, we have set up three QFINDs, two of which are nested.
Logically, Qilan will find the first record in Movies/MOVIE, then return all
records in Movies/REVIEW, and then finally return all records in
Movies/VOTING that match the MOVIE_ID from ‘first_find’. This
retrieval will be repeated for each record in Movies/MOVIE.

Note that MOVIE_ID is returned by both ‘first_find’ and ‘second_find’. In
order to differentiate the values, we specify the name of the QFIND in the
query using acquire __ from __.

The use of a QFIND name attribute in this manner is the exception, normally
just using an acquire __ is all that’s required.

Page 226

QUERYICON: A flag type abacus dragged from the palette
(Values Tab), built to query the records in the specified table.
Qilan will attempt to coerce abacus results to a flag type, when
possible.

Queryicons need to be built in the same table as
represented by the data. The field dialog window selects
the table; the palette values tag is where you will select
the corresponding table and abacus expression.

Qilan attempts to parse the abacus expression and pass
the result (as sql) to the database for processing. This
avoids syntax errors; in fact it avoids syntax altogether –
a very good thing!

QUERY: A sql query statement. QUERY supercedes
QUERYICON, however if both are selected, QUERYICON
will be used if QUERY is undefined.

A QUERY may be constructed in a database table, a
framework abacus expression or typed directly on the
WebTemplate itself. A QUERY is the portion of the sql
Select statement following the ‘Where’ clause. When
referencing a table field, be sure you use the field’s
‘external name’, not the Qilan name.

SORT: An abacus or field dragged from the palette (Values
Tab). Records retrieved will be sorted, in ascending order, on
this value.

SORT icons need to be chosen from the same table as
represented by the data. Use the palette values tag to
select the corresponding table and icon. If you are
familiar with SQL, SORT is the same as ‘ordered by’.

If you desire the SORT to be in descending order, choose
the attribute, DESCENDING along with the SORT
attribute. Selecting DESCENDING without SORT has
no effect.

Page 227

FIRSTRECORD: The first record (starting at 1) to be
extracted from the database. Accepts a field, abacus or any
numeric value.

RECORDLIMIT: The maximum number of records to be
extracted from the database, starting at FIRSTRECORD.
Accepts a field, abacus or any numeric value.

Use of this attribute can help speed up the display of data
on HTML forms. Although the database will process the
query or queryicon regardless of the RECORDLIMIT (a
sql limitation), only the number of records specified by
RECORDLIMIT will be passed to the browser.

DISTINCT: A directive to return only unique records.
Uniqueness is defined as the concatenation of the FIELDS
specification. In other words, if you ask for Last Name and
First Name, only one record will be returned with the same last
and first name.

LOCK: A text entry used to create and name a record snapshot.
The snapshot will be composed of all fields denoted as ‘locked
variables’. Names are case sensitive.

Page 228

HTML / QFIND Derivative Tags

The behavior of the QFIND tag is find first, find next, find next and so
forth until there are no more records to find. This action is typical of
lists. HTML does not define a ‘default’ list format, but rather
provides several styles for the designer to choose. Each style is a bit
different, but they all share the same list functionality.

The approach taken by Qilan organizes HTML lists by their native
style, then integrates the functionality of the QFIND. We suggest you
refer to a reference book on HTML to understand the type of list each
tag produces as well as required attributes and accepted values.

Each tag Qilan HTML list tag iterates, just like the QFIND. Tags
appearing within the scope of each list tag (except for QTABLE) will
be repeated for each record retrieved.

Briefly, here are the Qilan HTML list tags:

QSELECT

This tag is used when a multiple select list or pop-up is desired
to display database data. It usually requires the specification of
option and display values. It is the only list style that can be
used as a FORM input.

Page 229

QTABLE

This tag is used when a table format is desired to display
database data. This is very common format and useful for
displaying limited amounts of data.

Unlike the other Qilan HTML list tags, subordinate tags within
the scope of the QTABLE are not treated equally, in so far as
iteration is concerned. If a QTABLE has TBODY, only the
TBODY will iterate; otherwise iteration will begin with the first
TR.

Browsers typically do not display table data until all the data is
received. Lists of hundreds of records may take a long time or
fail to display due to browser memory constraints. Consider
using QUL, QDL or QOL as alternatives, as the browser will
start displaying data as it is received.

QUL

This is the style of an ‘unordered’ list. It creates a simple,
bulleted list. It requires the specification of a LI tag as each
‘list item’.

Page 230

QDL

This tag creates a list of items with related definitions. Each
item in the list is enclosed with a DT tag with the corresponding
definition enclosed within a DD tag immediately afterwards.
The definition will appear indented under each item.

QOL

This is the style of an ‘ordered list. It creates a simple, numbered list
of items. It requires the specification of a LI tag as each ‘list item’.

QMENU

This tag creates simple, streamlined list of items. It requires the
specification of a LI tag as each ‘list’ item. Most browsers will
place a bullet in front of each list item.

Page 231

QINPUT

This tag is performs the same basic functionality of an HTML
INPUT tag while adding specific Qilan enhancements.

Attributes

USE: Accepts field icons. The name of the icon (as it appears
in the Framework window) becomes the NAME attribute and
the icon’s value becomes the VALUE attribute.

Qilan treats the input types, “checkbox” and “radio
button” as exceptions to the USE rule. For checkboxes
and radio buttons, USE will extract the icon’s name, but
not the value. The value attribute must be selected
separately. The checked attribute is set automatically
when the value of the field specified by the USE attribute
matches that of the value attribute.

NOTE: NAME and CHECKED attributes are not available for
QINPUT although other Qilan and HTML attributes can be
used.

In this example, the HTML NAME attribute is set by the USE
attribute: using the name of the field, ‘company’. When the
value of the field, ‘company’ equals the value attribute, ‘Y’, the
radio button will be selected.

In this example, the HTML NAME and VALUE attributes are
set by the USE attribute. The NAME attribute becomes the
name of the field, ‘company’; the VALUE attribute is
determined by the value assigned to the company field.

Page 232

A QINPUT may cause unexpected behavior for forms that
reference themselves. The QINPUT value (as derived from the
use attribute) will be that of the icon. In other words, the
HTML input will appear to return the same value as was
submitted. This may be desirable in some circumstances,
however to ‘clear’ the value, you must QASSIGN the icon to
the value, ‘undefined’.

And, to create an undefined value…

Page 233

QOPTION

This tag is a variant of the HTML OPTION tag and
incorporates conditional functionality for the
SELECTED attribute. All other HTML attributes
associated with the OPTION tag are supported.

Attributes

SELECTEDIF : Accepts a field or abacus expression
whose output is a value of a flag type. Positive values
will produce the ‘selected’ attribute.

In this example, company name is retrieved from the
Company table and formatted so that it appears as a
select list (pop-up). A framework field (not shown) is
created and named, ‘company’. When this form element
is submitted, the framework field will be valued with
whatever item is selected from the list. If nothing were
done to modify the selected attribute, the list would be
redrawn, starting with the first item. To default the list to
our chosen company, we create an abacus and use it in
our ‘selectedif’ attribute. This abacus is built in the
Company table. The abacus acquires the value of the
framework field and compares it to all the items in the
list. When an equality is found, a positive value is
returned and the company name selected.

Page 234

QGROUP

This tag returns summary values. The use of this tag requires a
QLOGIN on the same WebTemplate and before the QGROUP.
The user defined in Access, or entered as an attribute of the
QLOGIN, must have access permissions for the database table
(in the database), otherwise the QGROUP will fail. If you
design your WebTemplate with multiple QFINDs or
QGROUPs (all accessing the same Access), only one QLOGIN
is required.

In this example, we want to sum the number of votes received
by each movie. With the WebTemplate open, click the Tags tab
on the palette, then drag a QGROUP tag onto the

WebTemplate.

We will need to display the summary total, so place a
QVALUE under the QGROUP tag. A framework field is used
to hold the value. This may be a bit confusing, so let me
explain what’s really going on. Like the QFIND, there is a
difference between data retrieval and data display. The
QGROUP retrieves the data, or more correctly, aggregates it.
You, as the designer, can choose to use the result in another
calculation and/or show it to the user. Qilan gives you this
choice. In this example, let’s just show it. This is why we need
to use a QVALUE.

The next task is to tell the QGROUP what type of aggregate
value is to be performed.

Page 235

Highlight the QGROUP tag then choose New Attribute, from
the Icon menu. Choose ‘sum’.

Sum now appears on the same line as the QGROUP.

Page 236

The question is now, “sum what from where”? To answer these
two questions, double click on the ‘sum’ line. The sum dialog
will open. Use the two popups at the top of the window to
select the Access (database) and table. Once this is performed,
the list of fields or abacus expressions will be displayed. Click
the field icon to display fields - abacus icon to display abacus
expressions.

The right portion of the list shows the fields or abacus
expressions in the chosen table. Next to each is a pop-up. The
popup lists all fields in the current Framework. The pop-up
will remain dimmed until you select a table field or abacus
expression. Double click to select. A check will appear when
selected.

The Framework field is automatically assigned to the value of
the summary total.

This is really a neat feature. Qilan automatically assigns
a Framework field to the summary value. If you take a
look at the sum dialog carefully, you might notice that
you could summarize lots of table fields, all at the same
time. Of course, you will want to assign them to
different Framework fields (but you knew that!).

In this example, we have just used the QGROUP
attribute, sum, but other aggregate calculations can be
added. One QGROUP can perform summaries, averages,
maximums, minimums and counts, all at the same time.

After closing the sum dialog, notice the table field being
summed is shown, but the assigned Framework field is not
shown.

Page 237

Summarizing by a field (or abacus) is performed using the
attribute, GROUPBY. When this attribute is defined,
QGROUP will perform an automatic DISTINCT on the
GROUPBY selection outputting an aggregate value for each
record found.

The construction shown below will output one unique record
for each city along with the number of times the city name is
found amongst all the table records. Note how the QGROUP is
placed between the TABLE and TR tag. The insertion is
performed while holding the ‘option’ key. As each city is
found, QGROUP will iterate. This effectively creates a new
table row.

Attributes

NAME: An identifying text value that references the QGROUP
as an object. Used by the abacus operators, acquire __ from __
and assign __ from __, where ‘from’ is the name of the
QGROUP object.

QUERYICON: A flag type abacus dragged from the palette
(Values Tab), built to query the records in the specified table.

QUERY: A SQL query statement. QUERY supercedes
QUERYICON, however if both are selected, QUERYICON
will be used if QUERY is undefined.

Page 238

COUNT: Count on a field will return the number of records
where the field is defined and meeting the query criteria, if any.

SUM: The total of a numeric field, or a value that can be
coerced into a numeric field.

AVE: The average value of a numeric field, or a value that can
be coerced into a numeric field.

MAX: The maximum value of a numeric field, or a value that
can be coerced into a numeric field.

MIN: The minimum value of a numeric field, or a value that
can be coerced into a numeric field.

GROUPBY: A field dragged from the palette (Values Tab),
used to group records in a specified table. If GROUPBY is
specified, the summary information will be returned in multiple
records, one record for each unique value in the GROUPBY
icon. They will be returned in ascending order of the
GROUPBY icon, unless DESCENDING is specified.

FIRSTRECORD: The first record (starting at 1) to be
extracted from the database. Accepts a field, abacus or any
numeric value. This attribute will only be used when
‘GROUPBY’ is selected and defined.

RECORDLIMIT: The maximum number of records to be
extracted from the database, starting at FIRSTRECORD.
Accepts a field, abacus or any numeric value. This attribute
will only be used when ‘GROUPBY’ is selected and defined.

DISTINCT: A directive to aggregate only unique records
based on the field(s) selected by aggregate attributes. The
aggregate attributes include SUM, COUNT, MIN, MAX and
AVE. This attribute is inferred when GROUPBY is selected.

Page 239

QLOGIN

This tag contains information necessary to access the database. When
this tag is used without attributes, it will use the log on information
stored in the Access icon. WebTemplate attributes, if used, will take
precedence over access icon parameters.

The QLOGIN initiates a database request for access and therefore
needs to open a connection. This process may take time depending
upon the location of the database, number of concurrent connections,
configuration of the database nameserver as well as other factors.

Each WebTemplate should only have one QLOGIN for each
database that will be accessed, although there is no limit on how
many databases can be accessed by a WebTemplate. It is
recommended that QLOGIN tags be located just after the
BODY tag or within the HEAD tag.

Never place a QLOGIN inside a QFIND or HTML list
derivative.

Consider placing the QLOGIN inside a QIFBLOCK when
database access is dependent upon data validation or other
logical operators.

The screen shown above uses a flag abacus expression to determine
whether a login is required. Note that however, if the abacus
expression itself must access the database, this construction will fail.

Page 240

Attributes

DATABASENAME: The name of the Access icon.

OVERRIDE: Accepts a framework icon formatted as a
‘dictionary’. The dictionary keys/values will be used (when
they exist) in place of the login panels’ key words and input
values.

DEBUG: Logs SQL sent to the database (when checked). See
Project Settings for details.

Page 241

QWHILE

This tag causes all tags (‘Q’ tags and HTML) within it to repeat (or
loop).

Attributes:

ICON: A field or abacus icon, which returns a flag.
When the flag is evaluated in the affirmative (Y, Yes, T,
True or 1) QWHILE will repeat all tags contained within
it, otherwise QWHILE will be ignored.

Qilan prevents loop constructions from ‘running amok’.
In the Project Preferences, there is an iteration limit. A
default setting (200) is automatically invoked in the event
your loop does not behave properly.

In this example, 10 records are automatically updated. We start
by assigning the value of zero to the field, ‘count’. Next we
enter our loop. QWHILE is evaluated and returns, Yes. At this
point, we re-assign the value of count to ‘count +1’, then
perform our update. Now the loop is re-evaluated. The loop
will continue 10 times until the value of count is greater than
10.

Page 242

QWHILE is very useful modifying blocks of text. For example,
let’s say you want to remove linefeeds (LF) from a block of
text. Shown below is the final WebTemplate construction.
Two Framework fields, ‘export_layout’ and
‘export_layout_temp’ are used as assignment variables.

The first action is to assign the text block, ‘10_export_layout’
to the field ‘export_layout’. This gives us a starting point. The
abacus outputting the text block is shown below.

Next, we enter our loop and evaluate ‘export_layout’. Does the
text contain a line feed? We use the abacus expression,
Character __ to make this determination. ASCII 10 represents a
line feed.

Knowing the text block contains a LF we extract all the text
preceding the LF. At this point, we need to hold this text in
temporary limbo until the next assignment is performed.
Therefore this abacus expression is assigned to
‘export_layout_temp’. The reason is simple, it will be used to
determine the value of the re-assigned ‘export_layout’.

Page 243

Now we are ready to re-assign ‘export_layout’.

Note how ‘export_layout_temp’ is used to re-write the text block by
circumventing the line feed. What results is a new text block that is
ready for re-evaluation.

If you find this difficult to grasp, just imagine peeling an apple.
What’s going on is that a section of text, from the first character to the
line feed (minus one letter), is put aside. Next, the rest of the text,
from the line feed (plus one character) to the last character is also put
aside. Lastly, the two text strings are combined. We keep doing this
until there are no more line feeds left.

How fast is this? Actually, quite speedy. On blocks of text of 1000
characters or so, you probably won’t notice anything.

Page 244

QLOOP

This tag is used to iterate through the contents of an array or
dictionary. Its icon attribute must be a framework field assigned as an
array or dictionary, or else Qilan will return an error.

The VALUE, KEY and INDEX attributes are used to extract specific
elements for display and/or additional data manipulations.

Attributes

ICON: A framework field assigned as an array or dictionary.
A field assigned or valued as any other type of structure (e.g.
text, number, date, etc.) will return an error. This is the
structure that will be iterated.

VALUE: A framework field to which the value element of the
array or dictionary is to be assigned.

KEY: A framework field to which the key element of the
dictionary is to be assigned. This attribute cannot be used with
the INDEX attribute.

INDEX: A framework field to which the index element of the
array is to be assigned. This attribute cannot be used with the
KEY attribute.

Page 245

In the example shown above, QLOOP is used to iterate through an array.
Note that QLOOP is placed within a SELECT and an OPTION tag is within
QLOOP. For each index entry, a new option value is shown. Observe how
the index and value elements are extracted as follows:

In this example, the array value is composed of two elements, the index and
its associated value. The abacus, ‘__ at index __’ is used to extract the
appropriate element.

Page 246

QCREATE

This tag unconditionally creates a new database record in a specified
table. The tag uses a DataFlow icon to insert field or abacus values
into fields in the target table.

Attributes

DATAFLOW: A dataflow icon dragged from the palette
(Links Tab).

Notes

The identification of the database and table are specified by the
Relationship, as used by the DataFlow. Source <–> Target
relationship links are ignored.

At least one source field/abacus in the DataFlow is required
otherwise the QCREATE tag will be ignored.

In the following example, a new record will be created with a
unique record id (key). This is akin to the traditional approach
of looking up the existing maximum record id then

incrementing the count by one.

The WebTemplate section contains an IFBLOCK to determine
whether a new record should be created. This is our
‘validation’ and is constructed to evaluate the presence of data
in two fields, ‘TextData’ and ‘NumericalData’:

Page 247

If the result of the validation is ‘Yes’, then we proceed to obtain
the maximum value of the current record id. This is performed
with a QGROUP with a max attribute. The value is then
assigned to the Framework field, ID.

The next step is to increment the record id. This is done in the
Framework using the following abacus expression.

Note how the ID is converted to an integer. Some databases
require explicit data typing or the attempt to insert this value
will fail. We are now ready for the relationship and dataflow
specification necessary for the QCREATE.

Page 248

QCREATE uses a DataFlow, but each DataFlow must be based
on a relationship. The relationship shown is used for other
linking tasks, but it will suffice for a QCREATE as only the
identification of the Access and Table is used.

Finally, the DataFlow inserts our data into the new record.
Note how the newly incremented record ID abacus is used.

Page 249

Designing web pages can be a challenge, but that’s another
story. QCREATE will insert new database records each time a
web page is loaded, or re-loaded. Unlike a traditional database,
when a web page is re-loaded, all the Qilan ‘Q’ tags are
re–processed. Unless the QCREATE is properly constructed
inside QIFBLOCKs, you might find yourself with lots of
unexpected records. An easy way to avoid this problem is to
use QUPDATE with a create attribute. The next section
discusses this very useful ‘Q’ tag.

Page 250

QUPDATE

This tag modifies existing database records based on relationship
link(s) or creates records when relationship link(s) does not exist in
the target table. A DataFlow icon is used to insert field or abacus
values into fields in the target table. The identification of the database
and table are specified by the Relationship, as used by the DataFlow.

Attributes

DATAFLOW: A dataflow icon dragged from the palette
(Links Tab).

CREATE: This attribute causes the QUPDATE to create
a record when the relationship target link(s) do not exist
in the target table.

LOCK: The name (text) used to retrieve a snapshot
created by an enclosing QFIND. Names are case
sensitive.

Specifying a lock attribute instructs Qilan to use
optimistic record locking. The QUPDATE lock
name and snapshot will be compared to the
QFIND’s lock name and snapshot, if they are not
the same, the update will fail. By default, a failure
(error) will abort the WebTemplate without an
error message. Refer to QTRY and QCATCH for
more details as to how to produce custom error
messages and/or other output strategies.

A field is valued upon submit and the FORM
action returns the same page. The QFIND lock
attribute snapshot is then available for use by the
QUPDATE.

The field, ‘success’ is assigned ‘N’ prior to starting
the QPROCESS. This value is maintained unless
the QUPDATE is successful.

Page 251

An example of how to design optimistic record locking:

Notes

QUPDATE requires that all source values used as links in a
relationship be defined. If any values are undefined, the
QUPDATE tag is ignored and an error message will be
returned.

Unexpected results may occur if any of the defined relationship
source links are empty. In this case, the QUPDATE will be
triggered and the DataFlow will be linked by the remaining
defined values.

At least one source field/abacus in the DataFlow is required
otherwise the QUPDATE tag will be ignored.

A QUPDATE may be used without a DataFlow when modifying
the current record. See ‘Special Case’ as the end of this
section.

Page 252

In the following example, we will use data obtained from the
database to create a link, then use a QUPDATE to create a new
record in another table if one does not exist. Existing records
will be updated. Here’s the final construction:

The BODY attribute, ‘bgcolor’, sets a background color. In this
case, the value, ‘FFFFFF’ means white. Let’s take a look at the
DataFlow and see what this does.

As it turns out, the DataFlow does quite a bit. Each time the
QUPDATE is processed, Qilan will create/update four fields.
The field, ‘access_num’ is posted to this form, so it will always
be defined. Take special note of the abacus, ‘get_staff_ID’.
This data is not present on this form, but is obtained from the
database before the update is performed. Now, let’s take a look
at the relationship, ‘link_bookmarks’.

Page 253

The relationship links the value, ‘get_staff_ID’ with the
‘staff_num’ in the ‘Book_Marks’ table. With reference to the
DataFlow and the QUPDATE, the meaning is to create a new
staff bookmark if the staff_num does not exist, otherwise
update the staff bookmark.

Observe that the value used for the relationship link must also
be used in the DataFlow.

Where did the value of ‘get_staff_ID’ come from?

Staff_ID is a value obtained from a database table. A
relationship has been created that uses a form value (in this
case, access_num), to retrieve the value.

Page 254

In summary then, when this form is accessed, the field value of
‘’access_num’ is valued. Qilan then retrieves the value of
‘staff_num’ based on the link, ‘assess_num <-> access_num’ in
the table, ‘UserGlobal’. Now, the link to BookMarks can be
established and the QUPDATE performed.

QUPDATE, with a create attribute, causes a record to be
created when a link does not exist, but will only update the
record if a link is found. This feature is very useful for
updating forms on the web. Now, no matter how often a user
clicks, “re-load”, the same record is merely updated.

Page 255

Modifying the Current Record (Special Case)

Qilan does not require the specification of a DataFlow when
modifying the current record. This is a special case circumstance
where the identification of the target table and field(s) is inferred by
the enclosing QFIND.

To prepare a QUPDATE for use without a DataFlow, the DataFlow
attribute must be cleared. Leaving the DataFlow attribute undefined
(black hole) will result in an error. Drag the QUPDATE tag to the
WebTemplate, the line will be highlighted as shown below. Click
once on the line to select the attribute, then choose Clear from the Edit
menu.

The next step is to select the table fields to be retrieved. Only fields
retrieved can be modified.

Insure you select all fields checked as Primary Keys (Table -> Field
specification window), otherwise the update will not occur.

Page 256

To modify a retrieved field, its value must be reassigned. This is
performed with the QASSIGN tag.

Note how the table value is used as the assigned ‘icon’ and the new
value (NewAddress) is assigned to ‘value’. Qilan reads this as,
ressign the icon (Access/Names/Address) to the value (NewAddress),
then update the record. This will be performed for each record
retrieved.

Only fields retrieved and reassigned are modified.

Page 257

QPROCESS

The QPROCESS tag groups a transaction. Processes that generate
SQL within the QPROCESS will be committed at the end of the
process. If there is any failure within the process, all SQL that has
queued will be rolled back.

A transaction is defined as any ‘Q’ tag that interacts with the
database. Typically however, you will want to do several things
and group them as a single transaction. For example, delete,
find and update data. To maintain database integrity, you will
want to insure that all three actions are performed. If the update
fails for any reason, you will want the delete rolled back. This
is where QPROCESS comes to the rescue.

Attributes

ACCESS: This attribute indicates which database is will
get the commit at the end of the process.

Note that nesting QPROCESS tags to handle
multiple databases is specifically NOT
recommended. The "two-phase commit" which is
required to handle this is not implemented.
Multiple QPROCESS tags should be sequential.

LEVEL: This is the SQL isolation level for the
transaction, and it can be set to read_uncommitted,
read_committed, repeatable_read, or serializable. Refer
to SQL Isolation Levels elsewhere in this manual.

Page 258

QTRYBLOCK

This tag is used to isolate errors generated by the system, Qilan,
Osmosis Gateway, webserver, JDBC driver or database as the result
of enclosed tags.

QTRYBLOCK is used as the parent tag for error evaluations. All
subsequent tags must be within the scope of a QTRYBLOCK. Tags
used to construct logical error evaluation statements are QTRY and
QCATCH.

A WebTemplate may contain as many QTRYBLOCKs as desired.
Nested QTRYBLOCKs are permissible.

Under normal circumstances, when Qilan encounters an error
generated by the system or database, the remainder of the
WebTemplate is aborted and the user receives an error message.
This message is usually cryptic and often not very helpful
(except to the exceptionally informed). QTRYBLOCK allows
these errors to be trapped and affords the designer the
opportunity to display alternative messages, stop processing in
a controlled manner, continue with the WebTemplate or even
redirect processing.

Attributes

NONE. When a QIFBLOCK is placed on the
WebTemplate, a QTRY is automatically inserted.

Page 259

QTRY

This tag is used to evaluate enclosed executable processs (tags). If an
error is encountered, the attributes associated with this tag will be
defined; otherwise they will be undefined. QTRY tags must be
enclosed by a QTRYBLOCK.

Attributes

INFOICON: A detailed error message usually
containing a ‘stack trace’. This output is most often
helpful to designers or programmers as it provides
extensive information regarding the error.

NAMEICON: The name of the error type. Many errors
are the same type, so this output may not be helpful for
debugging. This output may be helpful when the
application prompts users to report errors.

REASONICON: A concise statement as to the actual
cause of the error. Where possible, this message will be
in plain English. If your application prompts users to
take some action in response to error conditions, this
output will likely be the most helpful.

In this example, we want to output any errors that are produced
when we logon to the database and attempt to retrieve records.
Note how a QCATCH is used to obtain the error output.

Page 260

For an example, if the database were not available, the
following error messages would be produced:

Infoicon: { "__JavaBridge Stack Trace" =
"java.sql.SQLException: Database Company not started on
192.168.1.3.\n\tat com.openbase.net.OB_NameServer
getPortNumber(Unknown Source)\n\tat
com.openbase.net.b.a(Unknown Source)\n\tat
com.openbase.net.b.a(Unknown Source)\n\tat
com.openbase.jdbc.e.(Unknown Source)\n\tat
com.openbase.jdbc.f.(Unknown Source)\n\tat
com.openbase.jdbc.j.connect(Unknown Source)\n\tat
java.sql.DriverManager.getConnection(DriverManager.java:517
)\n\tat java.sql.DriverManager.getConnection
(DriverManager.java:177)\n\tat
com.commongrnd.jdbc.CSJDBCAdaptor.openChannel
(CSJDBCAdaptor.java:187)\n\tat
com.commongrnd.jdbc.CSJDBCAdaptorContext.openChannel
(CSJDBCAdaptorContext.java:74)\n\tat
com.commongrnd.jdbc.CSJDBCAdaptorChannel.openChannel
(CSJDBCAdaptorChannel.java:118)\n"; attributes =
("FIELDS=\"\"", "TABLE=\"Access/company\""); errLineNo =
269; tag = QFIND; }

Nameicon: java/sql/SQLException

Reasonicon: Database Company not started on 192.168.1.3.

By ‘catching’ the error, Qilan will output the error
message then continue with WebTemplate processing.
Read on to the next section to learn more about
QCATCH.

Error attributes are assigned to a framework field(s), which can
then be further evaluated by a subsequent QCATCH.

A QTRYBLOCK may contain as many QTRY tags as desired,
however only QCATCH tags that immediately follow a QTRY
will only reference the preceding QTRY. The example on the
following page demonstrates this.

Page 261

In the following example, we are testing for errors inside two
QTRY tags. The first tag contains a QLOGIN. If this tag
results in an error, the following QCATCH tag will be
executed. Note that when no QCATCH attribute is selected the
QCATCH will always be evaluated. In our example, we output
some text, then stop processing. By default, QCATCH will
replace system errors with user output, then continue processing
the WebTemplate. To stop processing (as shown here), we
must use a QSTOP tag.

The second QTRY tag retrieves database records. Should the
QFIND error, the error will be skipped and the remainder of the
WebTemplate executed. An empty QCATCH is used without
an attribute.

Page 262

QCATCH

QCATCH, when used in conjunction with QTRY, evaluates error
icons. The default behavior of a QCATCH is to suppress system
errors and continue with WebTemplate processing. QCATCH tags
must be enclosed by a QTRYBLOCK and preceded by at least one
QTRY.

QTRY tags may be followed by one or more QCATCH tags, each
testing for different error conditions.

Attributes

ICON: A boolean abacus icon used to evaluate a
previous QTRY attribute.

When a system error is detected from a preceding QTRY,
tags enclosed by QCATCH will be output. Using the
icon attribute, QCATCH can be selectively controlled.

The QCATCH icon attribute only evaluates attributes
from the QTRY.

Page 263

Using the Osmosis Gateway, sometimes AppleEvent errors are
returned. One such error is a –1701, which roughly translates to
the database not being available. Here’s how to trap for this
error:

The text enclosed by QCATCH will only be output when the
info_icon contains –1701. When this occurs, the remainder of
the WebTemplate will be processed. If any other error occurs,
the WebTemplate will be aborted.

Page 264

QSTOP

This tag is used to stop WebTemplate processing with or without an
error output.

Attributes

REASON: A user defined icon value that will be
displayed along with a system error. Note that QSTOP
will generate a system error by itself.

When a QSTOP is used without the reason attribute, the
WebTemplate will abort quietly. Processing tags and/or HTML
which follow a QSTOP will be ignored.

Page 265

QVALUE

This tag displays the value of an icon.

Attributes

ICON: Any field or abacus icon may selected from the
palette (Values).

This is probably the most used ‘Q’ tag. Its sole function is to
display icon values. When an abacus or field icon is placed into
its ICON attribute, the value will be passed to the browser for
display.

An undefined ICON attribute (black hole), will result in the
error, ‘Attribute Required’. Undefined icon values will be
passed as undefined.

In the example shown above, field values are retrieved from the database
using a QTABLE. QVALUEs are used to display these values within the
table structure (TD).

Page 266

QRUN

This tag passes commands, parameters and standard input (stdin) to
the system and returns standard output (stdout), and optionally,
standard errors (stderr). Commands to the system may be simple
requests, such as ‘ping’, mailto, ftp, etc., or more complex routines
executed by programmed scripts written in Unix, Perl or other low-
level languages.

Attributes

COMMANDLINE: The location of the script to be run
and optional arguments to be passed to the script. You
may directly type the CommandLine on the
WebTemplate, or use the output of an abacus or field.

The commandline consists of a series of "words",
separated by whitespace. Whitespace is spaces, tabs,
carriage returns or line feeds.

Each word either:

(a) contains no whitespace; or
(b) is appropriately "quoted".

There are three ways to quote:

• Enclose the entire word inside a pair of double quote (") characters;
• Enclose the entire word inside a pair of single quote (') characters; or
• Preceed each whitespace character by a backslash (\l) character. Note,

the backslash character *always* quotes the next character, so be sure
to double it if you want a backslash in your command line.

The first word in the command line is the program (or
script) to execute. It must be a *complete* path name.
For example, "ls" will not work; it must be "/bin/ls".

Page 267

The second and subsequent words are the arguments to
the command, as defined by the command. Empty
arguments (eg. "") are illegal.

INPUTICON: Input data to be passed to the
executable script. The system will interpret this as
standard input (stdin). INPUTICON may be omitted if
no standard input is to pass to the executable.
INPUTICON may be a field or abacus.

STATUSICON: The script status returned by the
system. The status will be placed into a Framework field
icon. Most scripts return ‘0’ if successful. If the timeout
is reached before the script output finishes,
STATUSICON will return ‘60’.

TIMEOUT: The length of time Qilan will wait for the
script to return an output, in seconds. If a TimeOut
attribute is not selected, the default timeout setting in the
Project Settings will be used. An undefined or zero
TimeOut setting will instruct Qilan to wait forever and
therefore should only be used when necessary.

PATIENCE: The length of time Qilan will wait for the
system to execute the script, in seconds. The default
value is five seconds.

ERRORICON: The value of standard error (stderr) as
returned by the system. The error will be placed into a
Framework field icon. If this parameter is omitted (not
placed into Framework field), stderr will be passed
directly to the browser.

OUTPUTICON: When a script is configured to output a
response, Qilan will accept that response and either place
it directly into the HTML or into a Framework field icon.
To have the response placed into the HTML, omit this
attribute; otherwise use a Framework field icon.

Page 268

Notes

All scripts will be executed as the same user as the
webserver, typically ‘www’. Applicable permissions and
access levels apply.

QRUN is exceptionally powerful as it provides the ability
to run system scripts and other executables directly by
internet users. Thoughtful design, thorough testing and a
complete security review should be mandatory
prerequisites before deployment. Be especially cautious
of passing standard input on the command line as a
parameter. Always use INPUTICON for standard input.

Do you know what a ‘thread’ is? This is not a rhetorical
question. When you initiate an action via QRUN, all
subsequent actions are connected or linked. Why does this
matter? Let’s say you start a script that takes 600 seconds to
finish - a big print job or extensive search. You set QRUN’s
timeout to 600 seconds. After 300 seconds however, the web
server’s default timeout, the browser reports an error. Qilan.cgi
is terminated along with all the scripts initiated by QRUN.
What to do? Fortunately, the answer is rather simple. Rather
than starting an action directly via QRUN, use the Unix
command ‘batch’. This command places your script in a queue
for execution as system levels allow. Once this is done, control
is immediately passed back to Qilan.

More information concerning the use of ‘batch’ can be found in
the Qilan Extras folder or by typing, “man at” using the Mac
OS X Terminal application.

Page 269

In this example, we will use QRUN to name and create a file.
The file will contain data from the database and be located on
an ‘exported’ volume. This will make it retrievable by a
foreign system.

The attribute ‘erroricon’ is assigned to the Framework field,
‘error_icon’. This is done to capture any error, thus preventing
the browser from displaying the error. Of course, we could put
the error in a database for later analysis or test for the presence
of an error. Typically, error responses are numeric, where zero
means no error.

Commandline is probably the most important parameter. Let’s
see what this looks like:

Lots of stuff here. “/Public/MakeFile” tells the system to locate
an executable file in the directory, “/Public”. The file’s name is
“MakeFile”. What does this do? It merely tells the system to
create an empty file. The file is a simple Unix shell script that
looks like this:

#!/bin/tcsh
#Invoke 'cat', create a file and pass it standard input.

/bin/cat - > $1
#Be sure to end this file with a carriage return.

Writing Unix shell scripts requires knowledge of Unix
commands and specialized formatting. A recommended
reference book is Unix Complete, by Dyson, Kelly-Bootle and
Hellborn.

Page 270

The only line that does anything is the one without the pound
character (#). Lines preceded by the pound sign are interpreted
as comments. The line ‘/bin/cat - > $1’ means to start the
Unix command ‘cat’, located in ‘/bin’, create an empty file in a
specified location and whose name is passed in the parameter
‘$1’, then finally write stdin (inputicon) to the file.

Where’s the location?

Unix treats spaces as separators. Therefore the next section of
text is where the file is going to be located,
/Network/Servers/Notes/. This path actually denotes a mounted
volume of another machine. The file’s name follows. The
name is derived from the database table and therefore makes it
unique for each file created. A date (properly formatted) and
suffix are included.

Now for the file’s contents. The value of the Framework field,
‘export_layout’ will be passed. The QRUN attribute,
‘inputicon’ is interpreted as standard in (stdin) by the system.

Page 271

QHTTP

This tag is functionally equivalent to the header tag as described in
RFC 2068 (Hypertext Transfer Protocol -- HTTP/1.1).

QHTTP header attributes specify metainformation: that is,
information about the page (webtemplate), not information that is
contained on the page. For example, http header attributes might be
used to instruct the browser how to interpret page data (e.g., an
application document) or modify web server caching.

QHTTP can be used with or without a HTML tag. We strongly urge
you to familiarize yourself with the large number of attributes and
extensive capabilities of the http header. More information can be
obtained at http://rfc-2068.rfcindex.net/.

Attributes

The number and variety of header fields associated with
QHTTP are extensive and are detailed by RFC 2068.
Before you attempt to use a specific field or enter an
attribute value, consult the documentation.

Note that QHTTP header fields specify metainformation:
that is, information about an object, not the information
that is contained in the object.

Webtemplates that define QHTTP header fields/values will replace
those associated with the webserver and/or the HTML tag. By default,
Qilan will automatically set the header attribute, “content-type”, to the
value, “text/html”.

Page 272

What follows is an edited excerpt from AOL.Webmaster.info that helps
to explain the concept and usage of the http header. We hope you find
it useful.

HTTP defines how web pages are handled and in what way they are
delivered over the Internet. It also includes any information about the
objects that are needed by proxy servers or a user's web browser.
Currently, HTTP 1.1 is an IETF Standard.

The process of calling a web page from a server involves several
steps. First, a client makes the request of a web server. The web
server receives the request and checks to see if the page exists. If the
page does not exist, an error message is returned to the client. If the
page does exist, the web server then determines if there are any
special processing needs, as would be the case with Qilan. The web
server then prepares to send the file by adding any default or custom
header information to the beginning of the requested page. Finally,
the page is served to the client.

HTTP headers are used to define a variety of qualities about a web
object. For instance, if a developer sets the cachability of a web site,
HTTP headers such as Cache-Control, Expires, and Last-Modified
would be used. HTTP headers can also include custom header
information. By adding custom headers, a developer can create an
HTTP header named Copyright and add site-specific copyright
information to it. Because headers can be set in a variety of ways, the
developer must choose the combination of headers and values that are
appropriate to the needs of the web site.

It is important to note that an HTTP header is not the same as the
META tag. META tags send information within the HTML page,
while HTTP headers send information about the HTML page.

Page 273

There are two ways to set the HTTP header information. The first
method is to set an HTTP header via the web server. All outgoing
pages will have a default set of headers attached to them that are
readable by other web servers, web caches, and web browsers. The
second method is to set an HTTP header for each specific page. With
this method, a web page is created with Qilan, and then the page is
scripted so that it will send the appropriate header information.

An Example: The VARY Header Field

Developers who wish to serve different content for different browsers
should use the VARY header field to specify the set of request-header
fields used in making the determination.

If you are using Qilan to serve different code to different useragents
(browsers), try setting your web server to respond with the VARY
header. This will ensure that all HTTP/1.1 servers will serve the
proper content to your users. If you are simply using JavaScript after
the page has been downloaded then the actual page downloaded will
be the same for each useragent.

If, for example, you wish to serve content in different languages, use
VARY: Accept-Language. When serving content based on web
browser, use VARY: User-Agent.

Page 274

Building Queries with SQL

The QGROUP and QFIND tags allow the designer to create and pass SQL
queries directly to the database. This feature enables complex statements to
be submitted. It should be used when the nature of the SQL statement is
beyond the built-in functions provided for by Qilan or if a special or unique
SQL syntax is called for by the database.

To submit a SQL statement use the ‘query’ attribute associated with the
QGROUP or QFIND tag. Note that all the QFIND derivatives also allow for
SQL.

You may enter SQL directly on the WebTemplate, as a text string, in an
abacus or as data from the database.

Building ‘raw’ SQL expressions with abacus operators is governed by a set
of special syntax rules. First, use of boolean or comparison operators that do
not output text (e.g., AND, OR, Equals, Contains, etc.) will result in errors
and should be avoided, however other string manipulators, such as Followed
by, If Then Else and Locate Substring may be used. For example, where
literal text is bracketed {},

({externalname} followed by {=} followed by {“city”}) works, but
({externalname} = {‘city’}) does not.

({externalname} followed by { LIKE } followed by {“} followed by
(acquire [icon]) followed by {“}) works, but

({externalname} starts with (acquire [icon])) does not

Note that the quotation mark is typed, even though the abacus parameter will
appear to enclose the value in quotation marks.

For assistance in forming SQL statements, we suggest you refer to Chapter
12 of, “A Guide to The SQL Standard, Fourth Edition” by Chris J. Date and
Hugh Darwen.

Please note that some databases may not support all database keywords and
functions. For example, OpenBase supports ‘sounds like’, using the syntax
‘A? B’, however use of this syntax with FrontBase will result in errors.

Page 275

The keywords SELECT and FROM are omitted, as the query is integrated
into the QGROUP and QFIND tags. Your query statement should be
WHERE {your statement}. The keyword, WHERE, is automatically
submitted.

When a database field name is referenced, you must use the EXTERNAL
name. External names can be located by double clicking on the field icon
inside a Table window. Some databases enforce case sensitivity for external
names. Check the database documentation.

Text strings must be quoted, but numbers cannot be quoted. The placement
of parentheses may be database specific. We urge you to refer to your
database documentation for specific SQL variations as well as database
specific functions.

Page 276

Building Queries with Qilan

Qilan abacus operators are used to query database data by linking together
abacus operators and program variables so as to create logical statements. A
query result is always a boolean value. Most abacus operators can be used
in query expressions, however not all SQL databases understand how to
interpret abacus operators. When a database cannot discern how to handle a
specific operator, an error will be returned.

The Qilan translation of abacus expressions is not literal SQL. Qilan
attempts to interpret the intent of the designer before creating the SQL
statement. This allows queries to be built based on the logical needs of the
designer or project rather than conform to an SQL syntax.

This is a very simple query. It is built in the Access > Table and compares a
table field to a constant (typed value). The abacus, in which this expression
is built, should be selected for the QFIND queryicon attribute. In this way,
all records whose zip code is ‘03106’ will be retrieved. Note that the zip
code field does not have to be chosen by the QFIND.

This query is similar to the previous one, except that the constant is replaced
with a framework field. We must ‘acquire’ the value, as it not present in the
Access > Table. ‘SQLTest’ is the name of the framework. When the
WebTemplate is executed, the value assigned to SQLTest/zip will be used in
the query.

This query combines the two previous statements using an IF THEN ELSE
expression. SQL cannot process this type of statement, but Qilan can. The
logical IF statement is evaluated first, then the result is converted into SQL
and passed to the database.

Page 277

In this query, the ‘like’ expression is used to emulate a ‘starts with’. When
the user types the first portion of a zip code, zip codes are searched with the
user’s entry followed by ‘any other character’. This is what the ‘%’ sign
denotes. It is often better to use the abacus operator ‘like’ than ‘starts with’.
The reason is twofold: First, ‘starts with’ is case sensitive and ‘like’ is case
insensitive; and two, ‘like’ is optimized by database engines.

This is a two-part query. The upper section is built in the framework
(SQLTest). When the framework field, ‘company’ is defined, the value
assigned to ‘company’ will be returned. On the other hand, when it is
undefined, ‘%’, will be returned. In Access > Table, the second portion of
the query statement uses an AND conjunction. This operator will only
return records when both sides are true. The goal is allow the user to query
company and zip codes; company may be left undefined. To accommodate
this eventuality, an undefined company search criteria will default to ‘%’,
the ‘like’ notation for, ‘select anything’.

This query first converts zip (a typical string data type) to an integer before
performing the comparison to the constant, “55555”. Note that the table
field is being converted. Qilan does not actually perform this function, but
rather passes off this responsibility to the database. Databases may perform
this function differently or fail completely. Please refer to your database
documentation for specific capabilities and functionality.

Page 278

These two queries are very similar, yet the first one will fail and the second
one succeeds. SQL databases do not understand a field alone in an operator
even though the output is boolean. In this case, the field, ‘Y’, is used in the
OR operator. In order to this to be processed correctly, we must create the
expression, “Y=Y”; where the second ‘Y’ is a typed constant. Note that the
operators, ‘defined__’ and ‘undefined__’ must be used alone and cannot be
used as a comparison operator. The following construction will fail.

When building queries, use of substring extractions (and other text
manipulation operators) built in the Access > Table may not work as
expected or fail with SQL errors. To avoid these problems, build the query
as a two-part statement with the text manipulation operator in the
framework.

Page 279

HTML Input Forms

Unless you just intend to serve database data to web users, you will likely
encounter the need for forms. Forms allow web users to submit data to the
web server, which passes the data on to Qilan for processing. The HTML
DTD defines forms and associated elements, not Qilan. On the other hand,
Qilan icons integrate with forms in a prescribed manner. The purpose of this
section is to review form basics from the ‘Qilan’ point of view.

The FORM Tag

To create a form, use the FORM tag. Inside this tag are each of the
individual form elements plus any other HTML content to create a layout.
You can include as many different forms on a page as you want to, but you
cannot nest forms – that is, placing on FORM tag inside another.

A FORM usually requires two attributes: method and action. Method refers
to how the data will be sent to the webserver while action is a pointer to the
script that will process the form.

The method attribute can be ‘post’ or ‘get’. What’s the difference?
Basically, ‘get’ sends the data to the web server in the environmental
variable, QUERY_STRING. To the user, the data appears in the URL
string. From a design standpoint, the ‘get’ method limits the amount
of data (to approximately 1K), but it does enable the environmental
variable to be used. On the other hand, the ‘post’ method allows for
an unlimited amount of data to be sent as it is sent as stdin (standard
in). Unless you need to use QUERY_STRING, I recommend the
‘post’ method.

A relative path or full URL indicates the action. The way most web
browsers work (thank goodness), is that once you type in a full path,
subsequent actions are relative to that path. So, if you put all your
WebTemplates in the same folder, you need only to type the name of
the exported WebTemplate. Neat!

One more thought, an action can reload the same page. In other
words, you don’t always have to go to a new page. I’ll get to this a
little later.

Page 280

The action attribute can be result of a Qilan icon or database value. You
could, for example, create a database table with a field called, “actions”.
Based on WebTemplate values or some other criteria, dynamically change
the content of the action attribute. Unfortunately, you will need to obtain
values before the form is returned to the web user. If you need to change the
form action attribute after the form has been served to the web user, consider
JavaScript.

Here the form action is the result of an abacus expression.

FORM Elements

Form elements comprise several tags that are designed to accept, display or
control data. These tags include INPUT, SELECT and TEXTAREA.

The INPUT tag has several types, including text, radio button, check box,
submit, hidden, etc. SELECT is used to display a scrolling list or pop-up.
TEXTAREA is used when many lines of text are required. What you decide
to use should be based on the type of data to be submitted and your target
audience.

Page 281

What’s important to understand is how data is actually sent from a web page
to Qilan. Consider the following WebTemplate:

This template contains two inputs, each with a ‘name’ attribute. The name
attribute is used by Qilan to differentiate the data associated with each input.
In other words, inputs are defined by a name – value pair.

TextData = [data] & NumericalData = [data]

Form input names must be unique when used on the same
WebTemplate. Input name attributes are case sensitive.

When input data is received by Qilan, Qilan ‘values’ a field of the same
name. Qilan will search for a field, in the same Framework as the
WebTemplate that has the same name as the input. If a field is located, the
field will be valued.

Page 282

In the previous example, we create two fields to accept the data:

This approach allows the designer to process data by referring to it using
Qilan fields. For instance, the abacus that tests for a DefinedEntry uses
NumericalData and TextData as follows:

A point to remember, a Qilan field passes a value, not identity.
Although you can drag a field into a name attribute, the value of the
field will result, not the name of the icon itself. This is a very
common mistake. Actually, I made it once or twice, but that’s another
story.

Another useful attribute of inputs and other form elements is the ‘value’
attribute. Think of this attribute as the default value of the form element.
For example, suppose you want a text type input to show the value of the
data submitted by the user. Here’s the basic construction:

The value of ‘TextData’ is submitted to Qilan. Qilan values the field of the
same name. The field is then used to set the value for the input.

Page 283

Now, whenever a user submits a value for the input, ‘TextData’, the value
will be returned (echoed). Let’s extend this example and return a different
kind of value.

This is a TEXTAREA. Text areas allow for multiple lines of input with
scroll bars. Note that a TEXTAREA does use a value attribute per se, but
can be defaulted using a QVALUE. What is ‘get_postoperative_dx’? This
is really a database value that gets looked up when the form is processed.

The abacus expression uses a relationship link to obtain the value. In this
case, we might not have a defined field, so we use ‘defined or’ to get another
in the event the first choice is undefined.

Page 284

Using a relationship link to default a field is one technique, here’s another.

This WebTemplate uses a QFIND to retrieve the database field, “RATED”.
We then drag that same field, from the palette, to the value attribute of the
input. This is very fast, but does require a bit more design. What would
happen if the QFIND returned more than one record? You would get two or
more inputs with the same name and probably not look too good either. So,
to complete this approach, we need to use a queryicon that limits the QFIND
to one, and only one, record. This is easily done if the user chooses a record
identifier on a previous screen. This value can then be used by the
queryicon.

Observe how the queryicon uses the field value, “row_id”, from the
Framework, “Test1”. If “row_id” is used in the queryicon, why doesn’t it
appear on the WebTemplate? A field value does not have to be on a
WebTemplate to be valued. The previous form action, identifying this
WebTemplate, submitted an input named, “row_id”.

Page 285

Before we leave this, a new concept has been introduced: valuing fields by
name. Let’s take a moment and see how this works.

This WebTemplate, located in the Framework, “Test1”, submits the input
named, “rating”. The form action points the another WebTemplate named,
“movedata”.

What we hope will happen is that the field, “rating” will be valued. So far,
we have been working with a single Framework, valuing fields by name.
Qilan extends this functionality between Frameworks, and even between
Projects.

Page 286

Here’s what the WebTemplate looks like in the Framework, Test2”. All that
is necessary is a field of the same name and the value submitted by the
previous WebTemplate will appear.

Take a deep breath.

Page 287

Dynamic Sorting

Qilan is designed so that the sort order for lists (QFIND, QTABLE,
QSELECT, etc.) is defined by the selection of a specific Access > Table
field. There does not appear be any way of dynamically controlling this
selection other than re-creating the entire list tag with a different Access >
Table field selected for the sort order.

To allow a user or data specification to control a list’s sort order, create an
abacus in the Framework containing the webtemplate list tag. Here is an
example:

In the Framework containing the webtemplate, create an abacus (sort_by)
that 'acquires' the Access > Table field you want to sort by. For example:

 acquire (company/people/age)

Where the database is 'company', the table, 'people', and the field, 'age'. The
selection is made from the palette and dragged into the "acquire __"
operator. Place this abacus into the list tag sort attribute. Note that the list is
retrieved from the same database and table as specified by the sort.

QFIND fields company/people/name
company/people/address
company/people/salary

sort sort_by

This will retrieve a list of people sorted ascending by age.

Now create a form INPUT on the form that allows the user to choose
between sorting by name or age.

INPUT type radio
name sort_order
value Y

INPUT type radio
name sort_order
value N

Page 288

The construction will create two radio buttons, which the choices are
mutually exclusive. The value of 'Y' means to sort by name; 'N' means to
sort by age. Now, back to controlling the sort order. Let's modify the
abacus, 'sort_by'.

IF (acquire (sort_order))
THEN (acquire (company/people/name))
ELSE (acquire (company/people/age))

Why do we have to 'acquire' sort_order (a Framework icon) when it is
valued upon a form submit? The reason is a bit obscure, but recall that the
list sort attribute is defined from Access > Table, therefore any value used in
the definition of the sort attribute must behave as though it originated from
Access > Table. The operator, 'acquire __', was designed to look out from
Access > Table. All we are doing is being consistent with this paradigm.

One more point. When the list attribute 'sort' is selected, it must be defined;
otherwise Qilan will report an error. So to insure this is the case, another
modification needs to be made to the abacus, sort_by:

IF ((acquire (sort_order)) defined/or (Y))
THEN (acquire (company/people/name))
ELSE (acquire (company/people/age))

When the page is first accessed, the value of sort_order will be undefined,
this construction ensures the list will be sorted by 'name' and avoid any
errors.

Page 289

Capturing Values

Qilan makes it possible to build entry forms from lists. Imagine a grid like
arrangement on a web page, where rows correspond to records and columns
to fields. Other software products can produce lists, but what you usually
encounter are submit buttons linked to each row. Qilan introduces a
technique to submit multiple records at one time (without iteration or loops).
This speeds data entry and improves the interaction between the user and the
database.

We begin with a FORM tag, as we will be entering data. As a bit of
departure, a submit button will be placed after the FORM tag. Actually,
submit buttons can be placed anywhere inside the FORM tag.

The name of the exported WebTemplate, “Capture_Example” is the same as
the FORM action. This will cause the page to be reloaded each time the
submit button is clicked the the web user.

Page 290

Within the FORM tag, we retrieve our data using a QTABLE. This tag will
produce a formatted list. These will be the records that we will be
modifying. We could use a query to restrict which records are retrieved, but
for this example, let’s show them all.

After dragging out the QTABLE, the field, “_rowid” is selected. This field
is the primary key for the table, “MOVIE”, thus guaranteeing a unique value
for each record. In a few moments, we will need to use “_rowid” in the
Framework, so the field, “framework_rowid” is created. QASSIGN is used
to assign “_rowid” to “framework_rowid”. The assignment will be
performed for each record retrieved. Note that QASSIGN is inside the
TBODY. This is because only a table’s TBODY iterates.

Page 291

Recall that a field will retain its value until re-assigned. Re-assignment
occurs each time that a new record is retrieved.

A little formatting is added to help readability. The THEAD will create
headings for the data we are about to modify.
The next step is to add the form INPUTs.

This looks pretty standard, but creates an immediate dilemma. What should
the input attribute names be? Because the INPUTs are contained within a
list, each record will contain the same two names. Submission would result
in all the records being updated with the same data. This will not work! But
wait, we have a method to uniquely name inputs – “framework_rowid”.
Let’s see how this is done.

Two abacus expressions are created that link a name with the framework
rowid. The name can be anything you want, just as long as it is unique for
the record. The result of this concatenation will be that all inputs will have a
unique name, regardless of how many records are retrieved. Next, drag the
abacus expressions to the respective input name attributes.

Page 292

In traditional systems (including Qilan), a field would be valued by naming
it the same as the input name attribute. If we did that here, we would have to
create two fields for every possible record retrieved. Qilan eliminates that
need with the Capture abacus expression. Providing Capture with an INPUT
name will return the input’s value.

These two abacus expressions will return the value of each input for each
record retrieved by the QTABLE. While it might seem the next step is to
place these abacus expressions into the INPUT value attribute, we have not
actually retrieved any data from the table, just “_rowid”. Placing the capture
abacus expressions into the value attribute would just echo the data back.
Another approach needs to be considered.

Page 293

A relationship link is established between “framework_rowid” and “_rowid”
in MOVIES. This will allow us to obtain database data as the QTABLE is
retrieving data. These ‘get’ abacus expressions are then used as input
values.

If you don’t understand why this method is being used, be patient.

The WebTemplate now appears as…

So far, we have created a method to display values from the database and
discern unique input names and values. What’s missing is the QUPDATE
tag that sends updated data back to the database. A quandary though, where
should we put the QUPDATE? We cannot place it outside the QTABLE
because each row (being a unique record) needs to be processed
individually. Should we update before the first row or after the last row?
Before we can answer this question, we need to review how this form will be
processed.

Page 294

Assume the form is shown on the browser. As designed, it will be a list with
two inputs on each line. When submit is clicked, here is the sequence of
events:

Qilan will re-load the form (recall the form action is the same as the
page name).

QTABLE will retrieve the first record.

QASSIGN assigns “_rowid” to “framework_rowid”

INPUT value is retrieved based on the relationship link.

If any data changes are made, we will want them to occur before the data is
re-displayed. This will give the user immediate feedback. Therefore, the
QUPDATE needs to be placed after the QASSIGN, but before any of the
INPUTs.

Previously, the inputs were defaulted using a relationship. Here’s the
reason… Data retrieved from the QTABLE would not show the results of
the QUPDATE. This is because the retrieval would occur before the
QUPDATE is processed. On the other hand, if we use a relationship, the
retrieval would be current. That is, after the QUPDATE.

The WebTemplate now appears as…

Page 295

The DataFlow used by the QUPDATE uses the ‘captured’ values to update
the database.

Are we done yet? Almost. Consider what happens when this form is first
opened. QTABLE will retrieve the records, then QUPDATE will attempt to
update the records using the Capture values. Without first submitting this
list, the Capture values will all be undefined. If we did not consider this, the
user would be very surprised to discover the inputs would all be empty each
time the form is accessed. An easy solution is to create a field that is only
valued after the submit button is clicked. When the form is accessed, the
field will be undefined. We then can use this field to trigger the QUPDATE.

The approach to use, although there are several variants, is to create an
INPUT of the type, ‘hidden’. The value of ‘Y’, will be submitted when
submit is clicked. The QUPDATE will be processed when the field,
‘trigger’ is set to ‘Y’.

The completed WebTemplate is shown on the next page.

Page 296

A completed example of the use of capture.

Page 297

Appendix

Page 299

Database Adapters

Page 300

Microsoft SQL Server® Supplement

Qilan includes a specially developed adapter for Microsoft’s, SQL Server.
The adapter is a thinweb TDS derivative.

FreeTDS is a project to document and implement the TDS (Tabular
DataStream) protocol. TDS is used by Sybase and Microsoft for client to
database server communications. The FreeTDS project also includes a
JDBC driver for Microsoft's SQL Server and Sybase, which are used by
Qilan. More information can be found at http://www.freetds.org/; the source
code can be obtained by visiting the Qilan web site.

The Qilan implementation has been tested with SQL Server versions 7 and
2000. Other versions of SQL Server could function erratically and should be
tested before deployment.

Limitations and other Considerations

• Fields indexed by MS SQL are not represented in the Access > Table >
Field window.

• Field designated as primary keys by MS SQL are not represented in the
Access > Table > Field window.

• Import schema is supported, but may take several minutes. Be patient.

Page 301

MS Access® Supplement

Qilan includes a specially developed adapter for Microsoft’s, Access
database. The adapter is based on an RmiJdbc bridge. Additional
information can be obtained by visiting:

http://www.objectweb.org/rmijdbc/

MS Access does not, in its native form, support JDBC connectivity.
Therefore a ‘bridge’ is necessary to convert JDBC calls to ODBC commands
that MS Access does support. The bridge software is known as the ‘server’
and must be installed on a MS Windows machine accessible the database.
Qilan communicates with the server, not directly with the database.

The software server component can be downloaded, along with complete
documentation and troubleshooting, from rmijdbc. (See ‘Installation on the
PC’ which follows)

http://www.objectweb.org/rmijdbc/current/RmiJdbc/doc/index.html

You do not need to download the Rmi ‘client’ software as this is already
built into the Qilan adapter.

The Qilan Login panel is shown above. When identifying the ‘Host’, insure
you enter the IP or host name of the machine running the Rmi server
software.

Page 302

Installation on the PC

Installation on the PC (the machine running the MS Access database)
requires as series of simple steps and minimal configuration. Here are the
basic steps to follow:

Go to: http://www.objectweb.org/rmijdbc/download.html

Download either:
 Zip format: RmiJdbc.zip
 Gzipped tar format: RmiJdbc.tar.gz

Uncompress the downloaded file.

Copy the file "RmiJdbc/dist/lib/RmiJdbc.jar" to an appropriate
location on your system. The specific location is not critical.

Start the MS-DOS Prompt program. At the dos prompt, cd (change
directory) to the directory containing the RmiJdbc.jar file.

Type: set CLASSPATH=<path_to_rmijdbc.jar_file>;.

(don’t forget the semi-colon followed by a period on the end)

set CLASSPATH=C: \RmiJdbc\dist\lib\RmiJdbc.jar;.

Press return.

Type: java org.objectweb.rmijdbc.RJJdbcServer
Press return.

This will start the Rmi server. To stop the server, hold down the
control key and press ‘c’.

To set up your ODBC data souce (database), refer to:

http://www.objectweb.org/rmijdbc/Access/access.html

Page 303

Limitations and Other Considerations

When using queries that contain dates, a special convention must be used so
that MS Access does not interpret a date as a character string or
mathematical formula. Dates must be proceeded and followed by the pound
sign as follows: (datetime_datatype > #11/01/2002#).

The wildcard character for ‘like’ searches is the percent mark (%). This is a
JDBC convention. When using MS Access via its traditional interface, the
asterisk (*) is used.

Import schema is supported; Export schema is not supported.

Page 304

MySQL™ Supplement

Qilan includes an adapter for the MySQL database. MySQL is an open
source, high performance, relational database. It is included as part of the
Mac OS X 10.2 Server installation. Additional information, current
downloads and full documentation can be obtained by visiting
http://www.mysql.com.

Qilan’s login panel is shown above. These values must be set using the
command line interface for MySQL or other tool before attempting to login
with Qilan. Additionally, Qilan cannot create, start or stop a database, or set
start-up parameters for MySQL. Before attempting to login, make sure a
database is started and user permissions are set correctly.

Once successfully logged in, Qilan can create, alter or delete tables and
fields, or if a database exists, Qilan can import the schema.

Limitations

Data types ENUM and SET cannot be exported.

ENUM is an enumerated data type. It is defined as a set of
permissible values, of which only one can be stored.

SET is similar to the enumerated data type except that multiple
enumerated types may be stored within a single field.

Page 305

If you wish to use either of these data types, they must be created via
the MySQL command line or other tools. Either type can be imported
into Qilan.

Use of wildcards with the LIKE abacus operator must follow the following
syntax:

The % (percent sign) means to accept any character. This is different
from standard MySQL documentation and is due to nature of JDBC
connectivity.

The _ (underscrore) means to accept one character.

Page 306

Paradox® Supplement

Qilan includes a specially developed adapter for Corel’s Paradox. Insure
you properly install the JDBC database module before you attempt to log
into a Paradox database. This is usually supplied with Paradox.

Limitations and other Considerations

• Import and Export schema are not supported. (This is due to a limitation
of the Paradox JDBC driver).

• Insert and update is not supported for data type autoincrement.
• Field length specification is not supported.
• Data types supported:

Alpha Number
Money Short
Long Integer Logical
Autoincrement Date
Time Timestamp

• Data types not supported:

BCD Memo
Formatted Memo Graphic
OLE Binary
Bytes

Page 307

• The NOT SQL keyword works inconsistently.
• Supported Operators:

Defined UpperCase
LowerCase Undefined
All math operators Like
Contains Endswith
Startswith

Page 308

FileMaker® Supplement

Qilan supports JDBC access to a FileMaker (FM) database (JDBC v1.3 or
higher). A FM database is not, strictly speaking, a relational database. A
FM database consists of a single table, not multiple related tables as with
standard SQL databases. When several databases are opened at the same
time however, Qilan will import a table for each database.

The FileMaker JDBC Driver connects to FileMaker Pro through a standard
HTTP connection. Therefore, when configuring FileMaker databases, insure
the "web companion" plug-in is enabled.

By default, FileMaker uses port 80. If you are running the Apache
webserver on the same machine as FileMaker, it is suggested you change the
web companion port to another value (e.g., 81). The host name would then
be entered as: [IP]:[port_number].

Qilan supports the importation of FM database schemas; export is not
supported. Table relationships are not supported.

‘Q’ Tags supported by FM

All ‘Q’ tags supported except QGROUP

‘Q’ Tag special attributes supported by FM:

QFIND ‘sort’ attribute
QFIND ‘descending’ attribute

Page 309

Flag type abacus operators supported by FM:

__ and __
__ or __
__ = __
__ not equal to __
__ > __
__ ≥ __
__ < __
__ ≤ __
__ like __ escape__ [escape is not supported]
not __
undefined __

Qilan does not support calling FM scripts.

Pseudofields Supported by Qilan

When a record is created, FM automatically numbers records uniquely as
well as timestamps each modification. As this data is considered by FM as
‘internally defined’, they are not considered ‘real’ fields and therefore not
imported by Qilan. To access them, you must manually create them in the
Access > Table. You can retrieve (although not change) this data by
creating table fields as follows:

External Name FM Data Type Qilan Data Type

RecordID Integer Integer
ModID Date Date

The RecordID can (and should) be used as the table’s primary key.
FM external names are not case sensitive.

Qilan users, who access FileMaker databases via JDBC, are required to
adhere to license restrictions required by FileMaker, Inc. Specifically,
section 1.d of the FileMaker Software License:

…use of an JDBC Driver to connect to a FileMaker Pro database
shall count toward the number of guests for which that copy of
FileMaker Pro is licensed to host.

Page 310

Sybase® Supplement

Qilan v2.8 is designed for OS X, version 10.3. To access a Sybase database,
you must use the ‘jconn2.jar’ file. This file is automatically installed
when Qilan is installed or can be found with the Sybase JDBC distribution
archive designed for Mac OS X.

Installation of the JDBC file is very easy. Log in as the root user, then copy
the file to /Library/Java/Extensions. Restart the Qilan developer, and
if you are using FastCGI, stop then restart the webserver.

The login parameters are shown above. Access to a Sybase database
typically requires the identification of a port address. To enter this
information, when necessary, append the host name with the port number
separated by a colon. For example:

19.168.1.1:1599

Where ‘1599’ is the port value.

Qilan supports both schema import and export. SQL operators are
supported, including joins.

Page 311

Some Sybase data types such as, char, the width attribute is not
imported. The width attribute will appear to be undefined in Qilan’s
Table > Field window. If import schema is followed by export
schema, the field width may be set to zero in Sybase. This may result
in data loss. We suggest you carefully review field attributes after
using schema import or export.

Page 312

Informix® Supplement

Qilan enables JDBC access to Informix databases via the JDBC jar file
(ifxjdbc.jar) as provided by Informix to their registered users.

For some versions of Informix, the name of the database must be prepended
by its path, starting from the root volume. Please consult your JDBC
documentation if you experience difficulty accessing the database.

Limitations and Other Considerations

• When importing or exporting the database schema, indexed fields and
primary keys are not identified or created. Use iSQL.
• Only the relationship semantic, "Inner Join", is supported.

Date queries use a special format, namely: yy/mm/dd. A two-digit
year (without the century) and forward slashes are required. This
format may be changed with JDBC environmental variables. Please
refer to Informix documentation for details.

Page 313

Oracle® Supplement

Qilan enables “thin client” access to Oracle 8i (v8.1.6 and higher) and 9i
databases via JDBC. JDBC drivers are provided by Oracle to their
registered users and are available for download at the Oracle website:

http://otn.oracle.com/software/tech/java/sqlj_jdbc/content.
html

Qilan v2.8 is designed for OS X, version 10.3. To access an Oracle
database, you must use the ‘classes12.jar’ file. This file is automatically
installed when Qilan is installed or can be found in the Oracle JDBC
distribution archive designed for Mac OS X.

Installation of the JDBC classes file is very easy. Log in as the root user,
then copy the file to /Library/Java/Extensions. Restart the Qilan
developer, and if you are using FastCGI, stop then restart the webserver.

The login parameters are shown above. Note that the 'Schema' parameter is
required. The Schema refers to the name given to a set of Oracle tables that
comprise a database. Qilan treats each database as a separate Access.

Page 314

Limitations and Other Considerations

• When importing the database schema, indexed fields are not identified.
• The relationship semantic, "Full Outer", is not supported.
• Export Schema has been disabled.

Page 315

Helix® Supplement

Qilan communication with Helix databases (collections) is accomplished
using the Osmosis Gateway®. Unlike most other databases, which use
SQL, Helix uses AppleEvents as the communication method to remotely
access data.

Selection of a Helix DTD (Project Settings) adds special ‘QOG’ tags to
WebTemplates. These tags enable communication with the Osmosis
Gateway via TCP/IP, which in turn communicates with Helix via
AppleEvents.

The Helix AppleEvent suite is limited. There are no explicit ‘query’ or
aggregate functions. However, creating process methods (similar to the
concept of stored procedures) are easily and quickly accomplished. These
methods can be activated, or called, when data is entered or retrieved.

Qilan’s Import and Export data schema options are not available for Helix.

Data retrieval can include both formatted (text, HTML, etc.), as well as raw
data. For users who wish to take advantage of Helix’s unique development
environment, Qilan offers the QOGOUTPUT. This tag will return data as
output by Helix. The data itself cannot be manipulated by Qilan, other than
displayed on the client browser. The QOGFIND, on the other hand, enables
Helix data fields to be mapped directly to Qilan Framework fields.

The role of the Osmosis Gateway is more than a passive communications
conduit. The Osmosis Gateway controls access between Qilan and Helix
and concurrency control for requested processes. We strongly suggest you
refer to the documentation provided with the Osmosis Gateway for complete
information. Qilan allows the user to define concurrency control within the
WebTemplate using the QOGPROCESS tag.

Designing Helix for AppleEvent access is beyond the scope of this
document. If you require assistance, CommonGround Softworks, Inc.
maintains an active list of experienced developers familiar with Helix and
AppleEvents. We strongly urge you to download the Qilan <-> Helix
tutorial, available on our website, for more extensive information.

Page 316

Communicating with the Osmosis Gateway

Qilan communicates with Helix databases via the Osmosis Gateway. The
Osmosis Gateway is a Macintosh application that ‘listens’ for TCP/IP data
on a user specified IP address/port. A special telnet protocol is employed to
control communication. The Osmosis Gateway will respond to IP inquiries,
including pinging, however messages will not be passed to Helix unless
proper keywords and user controls are used.

Page 317

Creating a Access to a Helix Database

An Access to Helix requires a login specification. While in the Project
window, drag an Access icon from the palette then double click on the
Access icon.

To open the Login Panel, double click on User Login line. The Schema
User Login is not used and may be left empty.

Login parameters:

IP/Domain Name: Qilan communicates with Osmosis Gateway via
TCP/IP. Enter the IP address (or domain name) of the machine
hosting the Osmosis Gateway. Qilan automatically sets the port
number to 3034, but you may enter another if necessary.

Examples: mydomain.com

192.165.1.1
192.165.1.1:3030

Page 318

Collection Name: The name of the Helix database as appearing in the
Macintosh Finder. The name is not case sensitive, but its spelling
must be exact.

User Name: The name of the access user. This is the user menu
containing all the Views specified for this Access. The name is not
case sensitive, but its spelling must be exact.

Helix sub-menus cannot be specified as users.
Custom User icon names will override default names.

Password: The User Name password. Qilan will display the password
as bullet characters. Passwords are case sensitive. We urge you to
use passwords, although they are not required.

Timeout: The length of time, in seconds, Qilan will wait for the
Osmosis Gateway to respond. If undefined, Qilan will wait
indefinitely. We suggest a timeout of 60 seconds. A longer timeout
may be necessary if extensive processing or large amounts of data are
to be transferred, whereas a shorter time out is suggested if a fast reply
is anticipated.

The lower portion of the Access window, containing Table icons, is not used
for Helix. This area should be left empty.

Page 319

Helix Specific ‘QOG’ Tags

Helix specific ‘QOG’ tags become available in the WebTemplate palette
after a Helix DTD is selected (See Project Settings).

The prefix, “QOG” (Qilan Osmosis Gateway) is used exclusively for all
Helix specific tags.

QOGLOGIN: Specifies an Access. Overrides the Access login settings by
modifying one or more of the tag attributes: IP location of the Osmosis
Gateway, Collection Name, User Name, or Password.

If you want to accept the default settings for the Access, the
QOGLOGIN is optional, as an Access specification is required for all
QOG tags.

QOGENTRY: Specifies the view in which the data is to be processed. The
data is passed to Helix in alphabetical order, by field/abacus name. The
field/abacus order will be shown on the web template after selections are
made. Required attributes are Access, Relation, View and Fields. Note that
Helix does not process data entry by field name, but rather by tabbing order
on a View.

To choose Framework fields or abacii, double click on the attribute line,
“Fields” on the WebTemplate. You may use as many fields or abacii as you
require.

QOGOUTPUT: Returns the output of a View. Required attributes are
Access, Relation and View. OuterAbacii is an optional attribute. If the
OuterAbacii attribute is selected, OuterAbacii will be output first. The
concept of ‘OuterAbacii’ refers to data displayed on a Helix View, but
outside of a list. The output will be sent directly to the client browser.

Page 320

QOGFIND: Returns the output of a View and places those values into
Framework fields. Required attributes are Access, Relation and View.
Fields and OuterAbacii are optional attributes.

Selecting one or more Fields, without an OuterAbacii specification,
will iterate through each record, ignoring OuterAbacii.

Selecting one or more OuterAbacii, without a Field specification, will
iterate once with the values of the OuterAbacii.

Selecting one or more Fields and OuterAbacii will iterate through
each record. The values of both Fields and the OuterAbacii are
available.

Selecting neither Fields nor OuterAbacii will result in the QOGFIND
tag being ignored.

Firstrecord: The first record (starting at 1) to be extracted from the
database. Accepts any numeric value.

Recordlimit: The maximum number of records to be extracted from
the database, starting as the ‘Firstrecord’. Accepts any numeric value.

After the QOGFIND tag is added to the WebTemplate, Fields or
OuterAbacii attributes can be added by selecting them from the Icon >
Attributes menu. To choose Framework fields, double click on the attribute
line on the WebTemplate. You may use as many Fields or OuterAbacii as
you require.

Helix outputs data to Qilan via the Helix “View”. As Views are based
on the icon structure, “Template”, the arrangement of data rectangles
defines order in which fields/abacus expressions will be output.
Generally speaking, the order will be left to right, top to bottom.

Qilan will receive data using the order of fields specified by the
QOGFIND. By default, an alphabetical listing will be used. The
correspondence between Helix fields and Qilan fields is by placement,
not Name.

Page 321

When naming Qilan fields for Helix, consider using a two digit
numeric prefix, e.g., 00, 01, 03, 04 and so forth. This will ensure they
will be arranged in the order you require. Fields cannot be re-
arranged within the QOGENTRY or QOGFIND tags beyond their
natural alphabetical order. If, at some point in the future you need to
add a new field after ‘03’, but before ‘04’, you can use the prefix,
‘031’.

Framework fields can then be used in other calculations, displays, formats or
Qilan functions. Data placed into Framework fields does not have to be
used or displayed, however it is discarded when cgi processing is completed.

Placing HTML tags within a QOGFIND block will repeat with each record.
As may result in improper formatting, we suggest you use the QOGFIND
HTML derivative tags:

QOGSELECT
QOGTABLE
QOGUL
QOGOL
QOGDL
QOGMENU

These special tags integrate HTML lists and QOGFIND. They should be
used whenever the contents of an HTML list reflect database information.
HTML and Qilan attributes (except OuterAbacii) can be selected from the
Icon > Attribute menu while the tag is highlighted.

Page 322

To build a table using the results of a QOGFIND, you would instead use a
QOGTABLE as follows:

QOGTABLE db [Access]
Relation [MyData]
View [MyView]
Fields [FirstName]

[LastName]
<TableBody>

<TR>
<TD>

QVALUE [FirstName]
<TD>

QVALUE [LastName]

QOGTABLE creates a single <TABLE> tag, then iterates the results,
one record per <TR> tag.

QOGPROCESS: Sets a process control for tags within the outline structure.
Required attributes are Access and Processname. When a Processname is
used, the Osmosis Gateway uses concurrency control for processes of the
same name. A Processname can be any text string that uniquely identifies
the specific process.

QOGTRANSFER: Transfers data to/from views within the same collection
or between collections. Required attributes are FromDataBase,
FromRelation, FromView ToDataBase, ToRelation, and ToView.

Helix does not use Relationship or DataFlow icons. These objects are used
exclusively for SQL databases.

Page 323

SQL Addendum

Page 324

SQL Reserved Words

The following words should be avoided when naming external field names.
Some SQL databases interpret these words as commands or functions and if
used as external field names, unexpected errors may result.

ABSOLUTE ACTION
ACTOR ADD
AFTER ALIAS
ALLOCATE ALTER
ARE ASSERTION
ASYNC AT
ATTRIBUTES BEFORE
BETWEEN BIT
BIT_LENGTH BOOLEAN
BOTH BREADTH
CALL CASCADE
CASCADED CASE
CAST CATALOG
CHARACTER_LENGTH CHAR_LENGTH
COALESCE COLLATE
COLLATION COLUMN
COMPLETION CONNECT
CONNECTION CONSTRAINT
CONSTRAINTS CONVERT
CORRESPONDING CROSS
CURRENT_DATE CURRENT_PATH
CURRENT_TIME CURRENT_TIMESTAMP
CURRENT_USER CYCLE
DATA DATE
DAY DEALLOCATE
DEFERRABLE DEFERRED
DEPTH DESCRIBE
DESCRIPTOR DESTROY
DIAGNOSTICS DICTIONARY
DISCONNECT DO
DOMAIN DROP
EACH ELEMENT
ELSE ELSEIF
END-EXEC EQUALS

Page 325

EXCEPT EXCEPTION
EXECUTE EXTERNAL
EXTRACT FACTOR
FALSE FIRST
FULL GENERAL
GET GLOBAL
HOLD HOUR
IDENTITY IF
IGNORE IMMEDIATE
INITIALLY INNER
INPUT INSENSITIVE
INSTEAD INTERSECT
INTERVAL ISOLATION
JOIN LAST
LEADING LEAVE
LEFT LESS
LEVEL LIMIT
LIST LOCAL
LOOP LOWER
MATCH MINUTE
MODIFY MONTH
NAMES NATIONAL
NATURAL NCHAR
NEW NEW_TABLE
NEXT NO
NONE NULLIF
OBJECT OCTET_LENGTH
OFF OID
OLD OLD_TABLE
ONLY OPERATION
OPERATOR OPERATORS
OTHERS OUTER
OUTPUT OVERLAPS
PAD PARAMETERS
PARTIAL PATH
PENDANT POSITION
POSTFIX PREFIX
PREORDER PREPARE
PRESERVE PRIOR
PRIVATE PROTECTED

Page 326

READ RECURSIVE
REF REFERENCING
RELATIVE REPLACE
RESIGNAL RESTRICT
RETURN RETURNS
REVOKE RIGHT
ROLE ROUTINE
ROW ROWS
SAVEPOINT SCROLL
SEARCH SECOND
SENSITIVE SEQUENCE
SESSION SESSION_USER
SIGNAL SIMILAR
SIZE SPACE
SQLEXCEPTION SQLSTATE
SQLWARNING START
STATE STRUCTURE
SUBSTRING SYMBOL
SYSTEM_USER TEMPORARY
TERM TEST
THEN THERE
TIME TIMESTAMP
TIMEZONE_HOUR TIMEZONE_MINUTE
TRAILING TRANSACTION
TRANSLATE TRANSLATION
TRIGGER TRIM
TRUE TUPLE
TYPE UNDER
UNKNOWN UPPER
USAGE USING
VALUE VARCHAR
VARIABLE VARYING
VIRTUAL VISIBLE
WAIT WHEN
WHILE WITHOUT
WRITE YEAR
ZONE

Page 327

Field Formatting Reference

Databases can define formats in a variety of ways. There is general
agreement on the generic types, such as CHAR, but considerable variation
with numeric types. Also, some databases extend the specificity of formats,
especially date and time. Also be aware that the operating system, on which
the database is installed, effects storage formats.

The following reference section is provided as a primer to the data formats.
It is not intended to be exhaustive or cover all databases.

Database Types

A data type that which the database defines. INTEGER, CHAR, DATE, and
DECIMAL are examples of data types.

Choosing a Data Type

When you choose a data type, you format (constrain) the field so that it
contains only values that can be represented by that type.

Every field in a table must have a data type that the database supports. The
choice of data type is important for the following reasons:

It establishes the basic properties of the field; that is, the set of valid
data items that the field can store.

It determines the kinds of operations that you can perform on the data.
For example, you cannot apply aggregate functions, such as SUM, to
fields with a character data type.

It determines how much space each data item occupies on disk. The
space required to accommodate data items is not as important for
small tables as is for large tables.

The Field Formatting Reference Section was adapted, in part, from the: Informix Guide
to SQL: Tutorial, version 9.1

Page 328

Using Data Types in Relationships

Almost all data type combinations must match (or be able to be coerced)
when you are trying to match source fields/abaci and target fields.

Refer the diagram in the Appendix, which shows the decision tree that
summarizes the choices among data types. The choices are explained in the
following sections.

Numeric Data Types

Most database applications support eight numeric data types. Some are best
suited for counters and codes, some for engineering quantities, and some for
money.

Counters and Codes: INTEGER, SMALLINT, and INT8

The INTEGER and SMALLINT data types hold small whole numbers.
They are suited for fields that contain counts, sequence numbers, numeric
identity codes, or any range of whole numbers when you know in advance
the maximum and minimum values to be stored.

Both types are stored as signed binary integers. INTEGER values have 32
bits and can represent whole numbers from -(231 -1) through 231-1, that is,
from -2,147,483,647 through 2,147,483,647. (The maximum negative
number, -2,147,483,248 is reserved and cannot be used.)

SMALLINT values have only 16 bits. They can represent whole numbers
from -32,767 through 32,767. (The maximum negative number, -32,768, is
reserved and cannot be used.)

The INTEGER and SMALLINT data types have the following advantages:

They take up little space (2 bytes per value for SMALLINT and 4
bytes per value for INTEGER).

Arithmetic expressions such as SUM and MAX as well as sort
comparisons can be done very efficiently on them.

Page 329

The disadvantage to using INTEGER and SMALLINT is the limited range
of values that they can store. The database does not store a value that
exceeds the capacity of an integer. Of course, such excess is not a problem
when you know the maximum and minimum values to be stored.

The INT8 (LONGLONG) data type is stored as a signed binary integer,
which uses 8 bytes per value. Although INT8 takes up twice the space as
the INTEGER data type, INT8 has the advantage of a significantly larger
range of data representation. INT8 can represent integers ranging from
-9,223,372,036,854,775,807 through 9,223,372,036,854,775,807. (The
maximum negative number, - 9,223,372,036,854,775,808, is reserved and
cannot be used.)

Approximate Numbers: FLOAT and SMALLFLOAT

In scientific, engineering, and statistical applications, numbers are often
known to only a few digits of accuracy, and the magnitude of a number is as
important as its exact digits.

The floating-point data types are designed for these applications. They can
represent any numerical quantity, fractional or whole, over a wide range of
magnitudes from the cosmic to the microscopic. Their only restriction is
their limited precision. Floating-point numbers retain only the most
significant digits of their value. If a value has no more digits than a floating-
point number can store, the value is stored exactly. If it has more digits, it is
stored in approximate form, with its least-significant digits treated as zeros.

This lack of exactitude is fine for many uses, but you should never use a
floating-point data type to record money or any other quantity whose least
significant digits should not be changed to zero.

Two sizes of floating-point data types exist. The FLOAT type is a double-
precision, binary floating-point number as implemented in the C language.
A FLOAT data type value usually takes up 8 bytes. The SMALLFLOAT
(also known as REAL) data type is a single-precision, binary floating-point
number that usually takes up 4 bytes. The main difference between the two
data types is their precision. A FLOAT field retains about 16 digits of its
values; a SMALLFLOAT field retains only about 8 digits.

Page 330

Floating-point numbers have the following advantages:

They store very large and very small numbers, including fractional
ones.

They represent numbers compactly in 4 or 8 bytes.

Arithmetic functions such as AVG, MIN, and sort comparisons are
efficient on these data types.

The main disadvantage of floating-point numbers is that digits outside their
range of precision are treated as zeros.

Adjustable-Precision Floating Point: DECIMAL(p)

The DECIMAL(p) data type is a floating-point data type similar to FLOAT
and SMALLFLOAT. The important difference is that you specify how
many significant digits it retains. The precision you write as p can range
from 1 to 32, from fewer than SMALLFLOAT up to twice the precision of
FLOAT.

The magnitude of a DECIMAL(p) number ranges from 10-130 to 10124.

It is easy to be confused about decimal data types. The one under discussion
is DECIMAL(p); that is, DECIMAL with only a precision specified. The
size of DECIMAL(p) numbers depends on their precision; they occupy
1+p/2 bytes (rounded up to a whole number, if necessary).

DECIMAL(p) has the following advantages over FLOAT:

Precision can be set to suit the application, from highly approximate
to highly precise.

Numbers with as many as 32 digits can be represented exactly.

Storage is used in proportion to the precision of the number.

Page 331

The DECIMAL(p) data type has the following disadvantages compared to
FLOAT:

Performing arithmetic and sorts on DECIMAL(p) values is somewhat
slower than on FLOAT values.

Many programming languages do not support the DECIMAL(p) data
format the way that they support FLOAT and INTEGER. When a
program extracts a DECIMAL(p) value from the database, it might
have to convert the value to another format for processing.

Fixed-Point Numbers: DECIMAL and MONEY

Most commercial applications need to store numbers that have fixed
numbers of digits on the right and left of the decimal point. Amounts of
money are the most common examples. Amounts in U.S. and other
currencies are written with two digits to the right of the decimal point.
Normally, you also know the number of digits needed on the left, depending
on the kind of transactions that are recorded: perhaps 5 digits for a personal
budget, 7 digits for a small business, and 12 or 13 digits for a national
budget.

These numbers are fixed-point numbers because the decimal point is fixed at
a specific place, regardless of the value of the number. The DECIMAL(p,s)
data type is designed to hold them. When you specify a field of this type,
you write its precision (p) as the total number of digits that it can store, from
1 to 32. You write its scale (s) as the number of those digits that fall to the
right of the decimal point. The graphic below shows the relationship
between precision and scale. Scale can be zero, meaning it stores only
whole numbers. When only whole numbers are stored, DECIMAL(p,s)
provides a way of storing integers of up to 32 digits.

Page 332

The Relation Between Precision and Scale in a Fixed-Point Number

Like the DECIMAL(p) data type, DECIMAL(p,s) takes up space in
proportion to its precision. One value occupies 1+p/2 bytes, rounded up to a
whole number of bytes.

The MONEY type is identical to DECIMAL(p,s), but with one extra feature.
Whenever the database server converts a MONEY value to characters for
display, it automatically includes a currency symbol.

The advantages of DECIMAL(p,s) over INTEGER and FLOAT are that
much greater precision is available (up to 32 digits as compared with 10
digits for INTEGER and 16 digits for FLOAT), and both the precision and
the amount of storage required can be adjusted to suit the application.

The disadvantages are that arithmetic operations are less efficient and that
many programming languages do not support numbers in this form.
Therefore, when a program extracts a number, it usually must convert the
number to another numeric form for processing.

Choosing a currency format

Each nation has its own way of displaying money values. When a database
displays a MONEY value, it refers to a currency format that the user
specifies. The default locale specifies a U.S. English currency format of the
following form:

$7,822.45

For non-English locales, you can change the current format by modifying
Qilan's Project Setting defaults, explicitly changing the symbol using the
'formatted by' abacus operator and/or modifying the International defaults
using the System Preferences.

Page 333

Chronological Data Types

Most databases support three data types for recording time. The DATE data
type stores a calendar date. DATETIME records a point in time to any
degree of precision from a year to a fraction of a second. The INTERVAL
data type stores a span of time; that is, a duration.

Calendar Dates: DATE

The DATE data type stores a calendar date. A DATE value is actually a
signed integer whose contents are interpreted as a count of full days since
midnight on January 1, 2001.

The DATE format has ample precision to carry dates into the far future
(58,000 centuries). Negative DATE values are interpreted as counts of days
prior to the epoch date; that is, a DATE value of -1 represents the day
December 30, 2000.

Because DATE values are integers, database servers permit them to be used
in arithmetic expressions. For example, you can take the average of a DATE
field, or you can add 7 or 365 to a DATE field.

The DATE data type is compact, at 4 bytes per item. Arithmetic functions
and comparisons execute quickly on a DATE field.

Choosing a date format

You can punctuate and order the components of a date in many ways. When
a database server displays a DATE value, it refers to a date format that the
user specifies. The default locale specifies an U.S. English date format of
the form:

MM/DD/YY

Some systems, notably Informix, may use the text format: YY/MM/DD to
represent the date in queries and other functions.

Page 334

Timezones

A timezone is the offset in hours and minutes a locale is from GMT
(Greenwich Mean Time). Databases that support timezone append it to the
DateTime format as follows:

2001-03-25 18:30:22 –0500 [yyyy-mm-dd hh:mm:ss ±hhmm]

where the first two digits are the number of hours and the last two digits the
number of minutes. The example above indicates the timezone for the locale
is a minus five hours and no minutes from GMT. We could also interpret
this as Eastern Standard Time.

Exact Points in Time: DATETIME

The DATETIME data type stores any moment in time in the era that begins
1 A.D. In fact, DATETIME is really a family of 28 data types, each with a
different precision. When you define a DATETIME field, you specify its
precision. The field can contain any sequence from the list year, month, day,
hour, minute, second, and fraction. Thus, you can define a DATETIME
field that stores only a year, only a month and day, or a date and time that is
exact to the hour or even to the millisecond. The size of a DATETIME
value ranges from 2 to 11 bytes depending on its precision.

The advantage of DATETIME is that it can store dates more precisely than
to the nearest day, and it can store time values. Its sole disadvantage is an
inflexible display format, but you can circumvent this disadvantage.

Page 335

Durations: INTERVAL

The INTERVAL data type stores duration, that is, a length of time. The
difference between two DATETIME values is an INTERVAL, which
represents the span of time that separates them. The following examples
might help to clarify the differences:

An employee began working on January 21, 1994 (either a DATE or a
DATETIME).

She has worked for 254 days (an INTERVAL value, the difference
between the TODAY function and the starting DATE or DATETIME
value).

She begins work each day at 0900 hours (a DATETIME value).

She works 8 hours (an INTERVAL value) with 45 minutes for lunch
(another INTERVAL value).

Her quitting time is 1745 hours (the sum of the DATETIME when she
begins work and the two INTERVALs).

Like DATETIME, INTERVAL is a family of types with different
precisions. An INTERVAL value can represent a count of years and
months; or it can represent a count of days, hours, minutes, seconds, or
fractions of seconds; 18 precisions are possible. The size of an INTERVAL
value ranges from 2 to 12 bytes.

INTERVAL values can be negative as well as positive. You can add or
subtract them, and you can scale them by multiplying or dividing by a
number. This is not true of either DATE or DATETIME. You can
reasonably ask, "What is one-half the number of days until April 23?" but
not, "What is one-half of April 23?"

Page 336

Forcing the format of a DATETIME or INTERVAL Value

The database always displays the components of an INTERVAL or
DATETIME value in the order year-month-day
hour:minute:second.fraction. It does not refer to the date format that is
defined to the operating system, as it does when it formats a DATE value.

Choosing a DATETIME Format

When a database displays a DATETIME value, it refers to a DATETIME
format that the user specifies. The default locale specifies an U.S. English
DATETIME format of the following form:

1995-10-25 18:02:13

Boolean Data Type

The BOOLEAN data type is a one-byte data type. The values are case
insensitive.

You can compare a BOOLEAN field against another BOOLEAN field, or
against Boolean values.

Page 337

Character Data Types

Most databases support the CHAR data type and VARCHAR.

Character Data: CHAR(n)

The CHAR(n) data type contains a width of n bytes. These characters can be
a mixture of English and non-English characters and can be either single
byte or multibyte (Asian). The width of n (for the database) can range from
1 to 32,767.

JDBC does not impose a character length restriction, however use of
fixed width or a specific database parameter may limit field length.

When a CHAR(n) value is retrieved or stored, exactly n bytes are
transferred. If an inserted value is shorter than n, the database server extends
the value by using single byte ASCII space characters to make up n bytes.

Data in CHAR fields is sorted in code-set order. For example, in the ASCII
code set, the character a has a code-set value of 97, b has 98, and so forth.
Most databases sort CHAR(n) data in this order.

The advantage of the CHAR(n) data type is its availability on all database
servers. The only disadvantage of CHAR(n) is its fixed length. When the
length of data values varies widely from row to row, space is wasted.

Page 338

Varying-Length Strings: VARCHAR(m,r)

The VARCHAR(n) data type contains a maximum width of n bytes

VARCHAR (m,r) is a data type for storing character data of varying length.

The advantages of the VARCHAR(n) data type over the CHAR(n) data type
are as follows:

It conserves disk space when the number of bytes that data items
require vary widely or when only a few items require more bytes than
average.

Queries on the more compact tables can be faster.

The following list describes the disadvantage of using the VARCHAR(n),
data types:

Table updates can be slower in some circumstances.

Varying-Length Execution Time

When you use the VARCHAR(n) data types, the records of a table have a
varying number of bytes instead of a fixed number of bytes. The speed of
database operations is affected when the rows of a table have a varying
number of bytes.

Because more rows fit in a disk page, the database can search the table with
fewer disk operations than if the rows were of a fixed number of bytes. As a
result, queries can execute more quickly. Insert and delete operations can be
a little quicker for the same reason.

When you update a row, the amount of work the database must do depends
on the number of bytes in the new row as compared with the number of
bytes in the old row. If the new row uses the same number of bytes or fewer,
the execution time is not significantly different than it is with fixed-length
rows. However, if the new row requires a greater number of bytes than the
old one, the database server might have to perform several times as many
disk operations. Thus, updates of a table that use VARCHAR(n), data can
sometimes be slower than updates of a fixed-length field.

Page 339

OBJECT Data Types

Object data types include those denoted as BLOB and CLOB. The primary
difference being BLOB types store data of any type, while CLOB data types
are used for textual data.

Object data types are generally undeclared as a 'type' and can contain text,
graphics, sounds or movies. Object data types can be of any size. Qilan
treats all Object data types as "LONGVARCHAR", internally converting the
data to the STRING type.

Caution should be exercised if the known Object data type is NOT textual.
The default HTML content/type declared by Qilan is "text/html". This
means that the browser will display Object data as text. If the data is an
image for example, Qilan will display raw 'code', not the image. In order to
display an image, sound, movie, etc., a separate window must be opened that
explicitly sets the html content/type to the desired type.

Objects can be logically manipulated similar to any other STRING type. For
instance, most databases support 'like' searches on Objects. Depending upon
the Object's size, retrieval may take more time than standard CHARACTER
types.

Changing the Data Type

After the table is built, you can change the data type that is assigned to a
field. Although such alterations are sometimes necessary, they should be
avoided due to the potential for data loss.

Page 340

Understanding Dates and Times with Qilan

With the advent of Qilan 2.0, processing of dates and times in Qilan became
a little bit more complicated. This section describes those complications,
explain why they occur, and help the Qilan developer work with them.

Why is it so complicated?

The complications stem from the attempt to combine at least three different
systems, each of which has it's own idea about what a date and/or time is:
SQL, JDBC and Qilan.

The SQL Standard.

The SQL Standard defines five different data types for dealing with dates
and times:

DATE
TIME
TIMESTAMP
TIME WITH TIME ZONE
TIMESTAMP WITH TIME ZONE

These types hold the kind of data one would expect. A DATE specifies a
date, including a month, day, and year. A TIME indicates a time, including
the hour, minute, second, and fractions of a second down to a microsecond
or smaller. A TIMESTAMP is a combination of both DATE and TIME. By
adding WITH TIME ZONE, the time includes the number of seconds away
from GMT this time is.

The standard allows some conversion between these types. TIMESTAMPS
may be converted to and from DATES and TIMES, but DATES and TIMES
may not be converted to each other. TIMES and TIMESTAMPS without
WITH TIME ZONE represent local times.

Page 341

JDBC

JDBC defines only three distinct data types for dealing with dates and times:

DATE
TIME
TIMESTAMP

These correspond, roughly, to their SQL counterparts. But where the SQL
DATE, TIME, and TIMESTAMP represent an abstract, anywhere in the
world, date or time or both; in JDBC, these represent the date, time, or both
specifically where the JDBC Client is located.

JDBC has a very different idea TIMEZONE. To JDBC, a TIMEZONE is an
area of the globe that is keeps its clocks at some fixed offset from GMT, and
changes to daylight savings time for some (possibly empty) period of the
year.

Each database system has its own JDBC driver. Each driver may interpret
the dates and times it gets from the database system anyway it deems
necessary. It should, however, always present dates/times to Qilan in the
local time zone. This means, for example, that a timestamp read from the
database for a summer date will typically be one hour later than the a time
stamp read from the database for the same time on a winter date.

JDBC also has no mechanism for dealing with the WITH TIME ZONE
construct in SQL. When retrieving data from a WITH TIME ZONE
column, the JDBC specification requires the driver to translate that to local
time, and otherwise discard the time zone information. When storing data
into a WITH TIME ZONE column, the JDBC specification does allow the
program (qilan.cgi in this case) to specify what time zone to store, even
though it refuses to reveal that information when retrieving that same
column.

The generous and cooperative folks at FrontBase have extended the JDBC
specification for us so that we can completely utilize the WITH TIME
ZONE construct in FrontBase databases.

Page 342

Qilan

Qilan.cgi defines only one time/date data type. It is effectively the same as
the SQL data type TIMESTAMP WITH TIME ZONE. To be consistent
with JDBC, times and timestamps created in qilan.cgi without time zones are
assigned to the local time zone. A date (without a time) is kept internally as
midnight (00:00:00) on that date in the local time zone. A time (without a
date) is kept as that time on January 1, 1970 in the local time zone. These all
follow from the JDBC specifications.

Various Databases

Of course, various databases may implement all, some, or none of the SQL
data types, and the various JDBC drivers that go with the databases may
interpret the specification differently.

What do I need to know to develop with Qilan?

Qilan takes care of most of the idiosyncrasies of each JDBC driver
automatically. No matter how the database stores the data, Qilan endeavors
to present this information in the same manner as each database's data access
tool does.

In the following descriptions, the "local time zone today" is the time zone of
the system time on the machine where qilan.cgi is running. That is subtly
distinct from the "local times zone of the data", which is the time zone of the
system time on the machine where qilan.cgi is running on the date
represented by the data. These two could be different by an hour because of
differences in Daylight Savings Time. Unfortunately, the different databases
use different interpretations of the JDBC requirement to use the local time
zone. The phrase "local time zone" denotes the interpretation used by the
database data access tool, whichever it may be.

DATE

When retrieving a date from a database, the system delivers a value that
reflects midnight on that date in GMT.

When storing into a date field, the system translates the value to GMT, and
stores the date part in the database.

Page 343

TIME

When retrieving a time from a database, the system delivers a value that
reflects that time on January 1, 1970 in the local time zone.

When storing into a time field, the system translates the value to the local
time zone, and stores the time part in the database.

TIMESTAMP

When retrieving a timestamp from a database, the system delivers a value
that reflects that time in the local time zone.

When storing into a time field, the system translates the value to the local
time zone, and stores the time part in the database.

TIME WITH TIME ZONE

When retrieving a time with time zone from a database, the system delivers
a value that reflects that time on January 1, 1970 in the specified time zone.

When storing into a time with time zone field, the system discards the date,
and stores the time and time zone part in the database.

TIMESTAMP WITH TIME ZONE

When retrieving a timestamp with time zone from a database, the system
delivers a value that reflects that time on that date in the specified time zone.

When storing into a timestamp with time zone field, the system stores the
date, time and time zone in the database.

Page 344

Database Specifics

OpenBase

OpenBase implements only date, time, and timestamp (which it calls
datetime). It uses the local time zone today for the local time zone.

FrontBase

FrontBase implements the complete SQL specification. It uses the local
times zone of the data for the local time zone.

Informix

Informix uses server (or user) specific environmental variables to control
many of its settings and parameters. Before you start using Qilan to access
Informix databases, we strongly urge you to carefully review the
environmental variables. Specifically, when DATE, DATETIME and
INTERVAL data types are used to format and query data, environmental
variables, such as 'DBDATE', can alter how text data is interpreted as dates
or times. Depending upon the server configuration, Qilan conversions may
not work correctly. Timezone, when configured, is supported by Informix.

Page 345

Modifying Program Defaults

Page 346

Modifying a DTD (Document Type Definition)

The document is provided so Qilan designers can modify standard DTDs.

Significant damage to the application or project, or functional
anomalies may result when DTDs are changed, therefore
CommonGround Softworks, Inc. assumes no responsibility for
modifications or consequential damages resulting from such changes.

DTDs define the general structure of an HTML document. Tags, attributes
and their ‘allowed’ placement are specified. Qilan ships with six DTDs,
corresponding to the version and use of Helix tags:

HTML 3.2
HTML 4.0 (strict)
HTML 4.0 (loose)
HTML 3.2 Helix
HTML 4.0 (strict) Helix
HTML 4.0 (loose) Helix

Accessing a DTD

The standard DTDs are located within the Qilan application; the Helix DTDs
are located in the Helix.Extension.Bundle, inside the Qilan application.
Each file is a text file and may be opened and edited with the Text Edit
application. If you routinely use a single DTD, then you only need to edit
that DTD.

Navigate to the Applications folder and locate Qilan. Press and hold the
control key and click on the Qilan icon. A small submenu will appear.
Select, “Show Package Contents”. The Qilan package will open displaying
the Contents folder. Double click to open the folder, then double click to
open the Resources folder. The full path is as follows:

/Applications/Qilan/Contents/Resources/

The folder, “Resources”, contains the DTDs for HTML 3.2, HTML, 4.0
(strict) and HTML 4.0 (loose). They can be identified by their suffix, “.dtd”.

Page 347

Modifying the DTD

Once you select the DTD you wish to modify, double click to open it. It
should open with Text Edit. The top of the file appears as follows:

<!--
This is the HTML 4.0 Transitional DTD, which includes
presentation attributes and elements that W3C expects to phase out as
support for style sheets matures. Authors should use the Strict DTD
when possible, but may use the Transitional DTD when support for
presentation attribute and elements is required.

HTML 4.0 includes mechanisms for style sheets, scripting, embedding
objects, improved support for right to left and mixed direction text,
and enhancements to forms for improved accessibility for people with
disabilities.

Draft: $Date: 1998/04/02 00:17:00 $

Authors:
Dave Raggett <dsr@w3.org>
Arnaud Le Hors <lehors@w3.org>
Ian Jacobs <ij@w3.org>

Further information about HTML 4.0 is available at:

http://www.w3.org/TR/REC-html40
-->

The DTD is organized into sections defining each element. Do not make
any changes, beyond the two suggested modifications unless you seek
professional assistance. Doing so may make the DTD unusable or cause
Qilan to behave erratically.

Page 348

Requiring a Tag Attribute

Most tags have attributes. Attributes allow for the addition of specific
characteristics, such as names, actions and methods. When a tag is dragged
onto the WebTemplate, an attribute may be implied or required. When an
attribute is implied, it is considered optional and appears on the Icon >
Attribute submenu. Required attributes appear on the WebTemplate as soon
as tag is dragged from the palette.

When an attribute is required by the DTD, we suggest that this not be
changed. However, you may make any implied attribute required.

Here is an example of how to make a TABLE border attribute required.
First, locate the ‘TABLES’ section in the DTD. Here is the start of this
section:

<!--===================== Tables =======================-->

<!-- IETF HTML table standard, see [RFC1942] -->

<!--
The BORDER attribute sets the thickness of the frame around the table.
The default units are screen pixels.

The FRAME attribute specifies which parts of the frame around the table
should be rendered. The values are not the same as CALS to avoid a name
clash with the VALIGN attribute.

The value "border" is included for backwards compatibility with <TABLE
BORDER> which yields frame=border and border=implied. For <TABLE
BORDER=1> you get border=1 and frame=implied. In this case, it is
appropriate to treat this as frame=border for backwards compatibility
with deployed browsers.
-->

Page 349

Attribute descriptions follow. Let’s move right to the “ATTLIST TABLE”,
as this describes the attribute list for the TABLE tag itself.

<!ATTLIST TABLE -- table element –

%attrs; -- %coreattrs, %i18n, %events
summary %Text; #IMPLIED -- purpose/structure for speech
 output
width %Length; #IMPLIED -- table width --
border %Pixels; #IMPLIED -- controls frame width around
 table
frame %TFrame; #IMPLIED -- which parts of frame to render
rules %TRules; #IMPLIED -- rulings between rows and
colscellspacing %Length; #IMPLIED -- spacing between cells
%Length; #IMPLIED -- spacing within cells --
align %TAlign; #IMPLIED -- table position relative to
 window
bgcolor %Color; #IMPLIED -- background color for cells
%reserved; -- reserved for possible future
 use
datapagesize CDATA #IMPLIED -- reserved for possible future
 use
>

Locate the attribute, “border”, in the first column. Note how the default is,
“#IMPLIED”. To make this attribute required, change, “#IMPLIED” to
“#REQUIRED” as follows:

border %Pixels; #REQUIRED -- controls frame width around

Don’t forget the pound sign (#) and use all capital letters. Save your
changes.

Now, when you drag out a TABLE tag, the attribute, ‘border’ will appear
automatically.

Page 350

Adding an Attribute

Under some circumstances, it may be necessary to add an attribute.
JavaScript, for instance, requires a ‘name’ attribute for the FORM tag. None
of the DTDs specify this attribute for the FORM tag. Here is the relevant
DTD section:

<!--================ Forms ======================================-->

<!ELEMENT FORM - - (%flow;)* -(FORM) -- interactive form -->

<!ATTLIST FORM
%attrs; -- %coreattrs, %i18n, %events
action %URI; #REQUIRED -- server-side form handler --
method (GETlPOST) GET -- HTTP method used to submit
 the form--
enctype %ContentType; "application/x-www-form-urlencoded"
onsubmit %Script; #IMPLIED -- the form was submitted --
onreset %Script; #IMPLIED -- the form was reset --
target %FrameTarget; #IMPLIED -- render in this frame --
accept-charset %Charsets; #IMPLIED -- list of supported charsets -
name CDATA #IMPLIED -- NOT in the original dtd, but
 required by Javascript --
>

The last line shows the ‘name’ attribute added to the FORM attribute list.
The first column is the attribute label, the second column the data source and
the third column whether it is implied or required. We have chosen to use
‘CDATA’ as the source (user defined).

Adding an attribute requires knowledge of HTML, what attribute is
supported by different browsers and platforms, and what types of attribute
values can be used. Caution is advised.

Page 351

Modifying Defaults.plist

The document is provided so Qilan designers can modify some of the Qilan
Developer standard defaults.

Significant damage to the application or project, or functional
anomalies may result when the default.plist is changed, therefore
CommonGround Softworks, Inc. assumes no responsibility for
modifications or consequential damages resulting from such changes.

The defaults.plist contains standard default settings for abacus fonts, sizes
and colors, the order of abacus expressions on the palette and various
WebTemplate settings such as indent measurements.

First log in as the root user, then navigate to the Applications folder and
locate Qilan. Press and hold the control key and click on the Qilan icon. A
small submenu will appear. Select, “Show Package Contents”. The Qilan
package will open displaying the Contents folder. Double click to open the
folder, then double click to open the Resources folder. The full path is as
follows:

/Applications/Qilan/Contents/Resources/

Locate the file, ‘defaults.plist’. Double click on the file to open it.

Page 352

Default.plist is in a very specific format, which must not be changed.
Although values can be modified, be careful not to change names or remove
brackets, equal signs, commas or semicolons.

Although you can edit default.plist directly, it is a lot easier (and
safer) to use the developer application, "Property List Editor". The
application is available from Apple Computer and is installed
automatically with the OS X Developer Tools.

To change abacus fonts, sizes or colors, first identify the abacus object you
wish to change (i.e., operators). The font family is displayed, by name,
followed by the point size.

Abacus colors are within the range of 0 to 1, where 0 is black and 1 is white.
The first and second line, refer to the unselected/selected colors.

The list of abacus tiles is used to order how abacus operators are shown on
the palette. Blank lines are ignored.

At the bottom of the document, you will find settings for the WebTemplate.
The values are in picas (12 points or about 1/6 of an inch).

Qilan must be restarted in order for changes to take effect.

Page 353

QRUN Shell Scripts

Page 354

Sample QRUN Shell Scripts

When using QRUN to execute a Unix shell script, you need to carefully
consider several factors: where is the script located, what permissions are
needed to execute the script, necessary parameters and the output, if any.
From a technical point of view, you are automatically running an executable
file. Computers are very fast, but not terribly flexible. Therefore, precision
is a valuable commodity.

Calling a system script, such as ‘cat’, requires a complete path specification:

/bin/cat

The leading slash (/) is essential. ‘cat’, for example, can be used to import a
file’s contents directly into Qilan for display on a web page. The way this is
performed is by specifing the file, then entering its full path after the
executable specification.

/bin/cat /MyDocuments/ShowFile

The space after ‘cat’ separates the file to be executed from the file to be
accessed. In this case, ‘ShowFile’ is located in the folder, ‘MyDocuments’.

The attribute, outputicon is designed to accept standard out (stdout),
meaning whatever the executable will be returning. A Qilan field is used to
hold stdout for use in other constructions or ‘Q’ tags.

Page 355

You are not limited to running system scripts. You can write your own
scripts of any complexity, using Unix or any other scriptable language. Here
are several examples. Each script is a unformatted text file with execute
permissions given to the user www. Note that lines starting with the pound
sign (#) are comments and not executed. The last line must end with a
carriage return.

Example #1: AutoRun

#!/bin/tcsh

#Sets an environmental variable
#Sets the path to the Qilan Script to be executed
setenv PATH_TRANSLATED "/Library/WebServer/Documents/MyWebTemplate"

#Sets the path to the Qilan support files
cd /Library/WebServer/CGI-Executables

#Redirects qilan.cgi output to a null device (no output)
/Library/WebServer/CGI-Executables/qilan.cgi > /dev/null

This script, when called using a QRUN, executes a Qilan WebTemplate
named, “MyWebTemplate”, located in /Library/WebServer/Documents. It
passes no parameters and returns no output. The last line tells the script to
send all output to /dev/null. The Unix way of saying ‘don’t bother’.

The first line, although starting with a pound character, is actually a
command. It means to open a shell (tcsh). QRUN is not actually executing
this script it is being run in the shell tcsh.

Qilan templates can be written to perform automated activities requiring no
user input, such as moving data between databases or periodically updating
files. QRUN can trigger AutoRun within a Qilan WebTemplate using Cron,
on a time basis, or any other mechanism capable of running an executable
file.

Page 356

Example #2: AutoRunOutput

AutoRunOutput will execute a Qilan WebTemplate, then return its output to
Qilan as standard out (stdout). Use QRUNs outputicon attribute for stdout.

#!/bin/tcsh

setenv PATH_TRANSLATED "/Library/WebServer/Documents/[HTML_Name]"

/Library/WebServer/CGI-Executables/qilan.cgi

Example #3: AutoRunParameters

This example will also run a Qilan WebTemplate, but will pass parameters,
such as a date or record number. In this example, we will be using the
QRUN attribute, inputicon or standard in (stdin).

#!/bin/tcsh
#Sets environmental variables

#Sets the path to the Qilan Script to be executed
setenv PATH_TRANSLATED "/Library/WebServer/Documents/[HTML_Name]"

setenv QUERY_STRING "[fld1name]=[fld2value]&[fld2name]=[fld2value]"
#Names/Values inside brackets should be form encoded; omit the brackets

setenv CONTENT_LENGTH "0"
#Redirects qilan.cgi output to a null device (no output)

/Library/WebServer/CGI-Executables/qilan.cgi > /dev/null

This example will ‘accept’ two fields and their corresponding values as
stdin. Formatting the fields is easy, so long as you conform to the syntax:

[field1name]=[field2value]&[field2name]=[field2value]

Field names or values containing spaces, equal signs or ampersands, should
be form encoded using the abacus, URL Encode. Otherwise the script will
fail.

This script will pass field names and corresponding field values. The
Framework containing the target WebTemplate should have fields of the
same name as the source fields. When the target WebTemplate is run by the
script, those fields will automatically be valued.

Page 357

Example #4: AutoRunDynamic

This example will also run a Qilan WebTemplate, but will pass dynamic
parameters, those that can vary. In this example, we will be using the
QRUN attribute, inputicon or standard in (stdin). The syntax is ‘$#’. A
number corresponding to the order in which the variable appears replaces the
pound sign.

#!/bin/tcsh

#Sets environmental variables

#Sets the path to the Qilan Script to be executed
setenv PATH_TRANSLATED "/Library/WebServer/Documents/$1"
#Where '$1' is the first parameter

setenv QUERY_STRING "$2=$3&$4=$5"
#Where Names/Values are parameters

setenv CONTENT_LENGTH "0"

#Redirects qilan.cgi output to a null device (no output)
/Library/WebServer/CGI-Executables/qilan.cgi > /dev/null

In the above example: The WebTemplate name, ‘AutoRunUpdate is $1.
The field name, ‘mrn_unit_number’ is $2.
The field value, ‘mrn_unit_number is $3.
The field name, ‘session_id’ is $4.
The field value, ‘session_id’ is $5.

Note the spaces between the field names and field values.

Page 359

Additional Appendices

Page 360

Installing FastCGI

Before beginning the installation of FastCGI, insure you have a valid
internet connection and have installed Apple’s Developer Tools for your
operating system. These can be found on your system installation CD. If
you already have FastCGI installed, there is no need to re-install and this
section can be omitted.

Do not attempt to use a pre-compiled FastCGI installer unless
specifically designed for your Apache application and configuration
parameters. Doing so otherwise may result may result in damage to
your httpd.conf file and/or Apache application.

If you are updating the Qilan engine from a version prior to 2.8, you
must re-intall FastCGI by running the installation scripts. The
reinstallation process will replace earlier versions.

The Qilan installation includes two FastCGI installation scripts, one for
Apache version 1.3.x and another for 2.0.x. Before you begin, insure you
have one or both of the Apache applications completely installed. By
default, Mac OS X will install Apache 1.3.x. Mac OS X Server provides the
option of installing Apache version 2.0.x. Apache 2.0.x is also available as a
separate install from versiontracker.com.

Installing FastCGI and Apache should follow a specific scenario. Our
recommendation is as follows:

• Determine your OS – OS X Client or OS X Server.
• Determine which version of Apache will be used – 1.x or 2.x.
• Determine which Apache package will be used – Apple or Faby.

We do not recommend running Apache versions 1.3.x and 2.0.x on the same
machine at the same time. You can safely install both versions, as long as
one or the other is disabled. If you need to enable both versions on the same
machine, please contact support@commongrnd.com for assistance.

Page 361

Installation for Mac OS X Client

Locate the script, “installfastcgi_apache13.command” or
“installfastcgi_apache20.command”, found in /Library/Qilan/fastcgi.
Double click to begin the download of FastCGI and installation process.
Your administrative password will be required.

The following processes will occur:

• The Terminal application will launch and execute the script
• Your system will be checked to insure required files are present (Apache

source files, System files necessary for compilation, etc.)
• FastCGI source will be downloaded from http://www.fastcgi/com
• Mod-fastcgi compiled and installed
• Removal of existing fastcgi.conf Include statements from httpd.conf;

installation of new fastcgi.conf Include statements
• Apache will be restarted
• Removal of all temporary files, including the FastCGI source.

Quit the Terminal application.

Installation for Mac OS X Server

Locate the script, “installfastcgi_apache13.command” or
“installfastcgi_apache20.command”, found in /Library/Qilan/fastcgi.
Double click to begin the download of FastCGI and installation process.
Your administrative password will be required.

The following processes will occur:

• The Terminal application will launch and execute the script
• Your system will be checked to insure required files are present (Apache

source files, System files necessary for compilation, etc.)
• FastCGI source will be downloaded from http://www.fastcgi.com
• Mod-fastcgi compiled and installed
• Removal of all temporary files, including the FastCGI source.

Additional and required changes to the httpd.conf file must be performed
manually. You will be prompted to do this at the end of the script's
execution. Apache’s configuration file, “httpd.conf”, will be opened for

Page 362

you. If you do not have write permission, log out and back in as the root
user, then navigate to /etc/httpd/ and open the file manually.

Scroll to the bottom of the file. It should appear as follows:

#LoadModule jserv_module /usr/libexec/httpd/mod_jserv.so
LoadModule fastcgi_module libexec/httpd/mod_fastcgi.so
#AddModule mod_jserv.c
AddModule mod_fastcgi.c
#Include /private/etc/httpd/tomcat.conf

Note, lines proceeded by '#' are not executed (commented out).

Now, change the above lines so that they appear as follows:

#LoadModule jserv_module /usr/libexec/httpd/mod_jserv.so
LoadModule fastcgi_module /usr/libexec/httpd/mod_fastcgi.so
#AddModule mod_jserv.c
AddModule mod_fastcgi.c
#Include /private/etc/httpd/tomcat.conf
Include /Library/Qilan/fastcgi/fastcgi.conf

The LoadModule fastcgi_module path is changed along with the addition of
a new 'include' line at the end.

Confirm your modifications, then save and close the file. Using the web
server administration application, restart the web server.

Page 363

FastCGI Configuration

Locate the file, “fastcgi.conf” in /Library/Qilan/fastcgi/. This is the
configuration file for FastCGI. We have configured the file for basic usage,
but you may alter it according to your situation and needs. Please refer to
the FastCGI website http://www.fastcgi.com for more information and
parameter settings.

FastCGI Error Checking (OS X and OS X Server)

To confirm that FastCGI has been successfully installed, access a Qilan
exported WebTemplate, from the browser, using the path:

[hostname]/fcgi-bin/qilan.fcgi/[WebTemplate_name]

If your WebTemplate is returned, then FastCGI has been properly installed.

Page 364

Installing Apache 2.0.x

You can obtain Apache 2.0.x from a website or install it from your OS X
Server installation disks.

Installing the Faby Distribution

The Faby distribution, available from www.versiontracker.com, is the
commercial version of Apache 2.0.x. It is a complete installation
package, including a system preference pane to control the startup and
basic setup. Following the instructions, Apache will be installed in a
directory (/Library/Apache2) that differs from the default Apple
location (/Library/WebServer). As defined by the Apache 1.3.x
configuration file (httpd.conf), references to cgi and web documents
will refer to /Library/WebServer as the root location. Rather than
changing all enclosed items to the new ‘root’ directory for Apache
2.0.x, we suggest modifying the configuration file. Changes are made
in httpd.conf Apache 2.0.x as follows:

Change Document Root
from: /Library/Apache2/htdocs
to: /Library/WebServer/Documents

Change Directory
from: /Library/Apache2/htdocs

 to: /Library/WebServer/Documents

Change ScriptAlias /cgi-bin/
from: /Library/Apache2/cgi-bin/

 to: /Library/WebServer/CGI-Executables/

Change Directory
from: /Library/Apache2/cgi-bin
to: /Library/WebServer/CGI-Executables

Page 365

The Faby distribution will assign port 8080 to Apache 2.0.x. When
you reference web pages, you must specify the port as port 80 will be
used by default. Using the URL syntax can do this:
http://localhost:8080/. Alternately, you can change the default port in
your System Preferences. We do not recommend running versions
Apache 1.3.x and Apache 2.0.x at the same time.

Modifying the FastCGI Installation Script

After installing and configuring Apache 2.0.x, FastCGI can be installed.
Locate the file, “installfastcgi_apache20.command”, located in
/Library/Qilan/fastcgi/.

IMPORTANT: Please insure you are logged on as a system
administrator, have access to the internet and installed Apple’s
Developer Tools.

The Apache 2.0.x installation script shipped with Qilan is designed to be
used with the Apple distribution. In other words, it expects to find Apache 2
in /opt/apache2. To use the installation script with the Faby distribution (or
any other location), you must manually edit the installation script. To do
this, use a text editor and open, “installfastcgi_apache20.command”. Go to
first section (line 14) and change the location:

set apache_dir = /Library/Apache2 {Faby default}
set apache_dir = /opt/apache2 {Apple default}

When you are ready, double click the installer to proceed. The installer will
download the correct version of FastCGI, modify configuration settings and
install the necessary files for Apache2.

Page 366

Qilan Field Coercion Reference

OpenBase Field Type Qilan Coercion

Char String
Date Date
Datetime Date
Float Float
Int (Integer) Int (Integer)
Long Int
Longlong Int
Money Float
Object String
Time Date
Varchar String

FrontBase Field Type Qilan Coercion

Boolean Int
SmallInt Int
Integer Int
Interval year to month Int
Numeric Float
Decimal Float
Float Float
Real Float
Double precision Float
Interval day with second Int
Time Date
Time with zone Date
Date Date
Timestamp Date
Timestamp with time zone Date
Character String
Varchar String
Character Varying String
Bit Not Supported
Bit varying Not Supported
Blob String
Clob String

Page 367

Command Key Equivalents

Function/Action Key/Key Combination

QILAN MENU

Preferences… ,

FILE MENU

New Project N
Open O

Save S
Save As… Shift S
Revert to Saved U

Export HTML H
Export All HTML Shift H

Page Set-up Shift P
Print P

Quit Q

EDIT MENU

Undo Z
Redo Shift Z

Cut X
Copy C
Paste V
Paste Into Shift V

Clear Shift X
Clear Delete

Page 368

Duplicate D
Select All A

Spelling… :
Check Spelling ;

ICON MENU

New Access Icon (Project Window) Option A
New Framework Icon (Project Window) Option F

New Abacus Icon (Child Windows) Option A
New Field Icon (Child Windows) Option F
New Table Icon (Access Window) Option T
New Relationship Icon (Child Windows) Option R
New DataFlow Icon (Child Windows) Option X
New WebTemplate Icon (Child Windows) Option W

Open Icon Option O
Open Uses Option U
Open Parent Option P

Expand All Shift {
Expland Selection [
Contract All Shift }
Contract Selection]

WINDOW MENU

Close W
Minimize M
Show Palette /

HELP MENU

Qilan Help ?

Page 369

Using Data Types in Relationships

Almost all data type combinations must match (or be able to be coerced)
when you are trying to match source fields/abaci and target fields.

The following diagrams show the decision tree that summarizes the choices
among data types.

Page 370

